留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

现浇边缘构件的装配整体式齿槽剪力墙抗震性能试验研究

初明进 熊赅博 刘继良 李祥宾 曹春利

初明进, 熊赅博, 刘继良, 李祥宾, 曹春利. 现浇边缘构件的装配整体式齿槽剪力墙抗震性能试验研究[J]. 工程力学, 2023, 40(11): 190-205. doi: 10.6052/j.issn.1000-4750.2022.02.0152
引用本文: 初明进, 熊赅博, 刘继良, 李祥宾, 曹春利. 现浇边缘构件的装配整体式齿槽剪力墙抗震性能试验研究[J]. 工程力学, 2023, 40(11): 190-205. doi: 10.6052/j.issn.1000-4750.2022.02.0152
CHU Ming-jin, XIONG Gai-bo, LIU Ji-liang, LI Xiang-bin, CAO Chun-li. EXPERIMENTAL STUDY ON SEISMIC BEHAVIOR OF ASSEMBLED SERRATE-EDGES MONOLITHIC SHEAR WALL WITH CAST-IN-PLACE BOUNDARY ELEMENTS[J]. Engineering Mechanics, 2023, 40(11): 190-205. doi: 10.6052/j.issn.1000-4750.2022.02.0152
Citation: CHU Ming-jin, XIONG Gai-bo, LIU Ji-liang, LI Xiang-bin, CAO Chun-li. EXPERIMENTAL STUDY ON SEISMIC BEHAVIOR OF ASSEMBLED SERRATE-EDGES MONOLITHIC SHEAR WALL WITH CAST-IN-PLACE BOUNDARY ELEMENTS[J]. Engineering Mechanics, 2023, 40(11): 190-205. doi: 10.6052/j.issn.1000-4750.2022.02.0152

现浇边缘构件的装配整体式齿槽剪力墙抗震性能试验研究

doi: 10.6052/j.issn.1000-4750.2022.02.0152
基金项目: 北京市自然科学基金项目(8222012);国家自然科学基金项目(51778034)
详细信息
    作者简介:

    熊赅博(1997−),男,重庆人,硕士生,主要从事装配式混凝土结构研究(E-mail: xgb812xgb@163.com)

    刘继良(1988−),男,山东人,博士生,主要从事新型结构与新材料结构研究(E-mail: lianglju@163.com)

    李祥宾(1994−),男,山东人,硕士生,主要从事装配式混凝土结构研究(E-mail: lixiangin@126.com)

    曹春利(1995−),男,黑龙江人,硕士生,主要从事装配式混凝土结构研究(E-mail: 851615436@qq.com)

    通讯作者:

    初明进(1973−),男,山东人,教授,博士,博导,主要从事装配式混凝土结构研究(E-mail: chumingjin@bucea.edu.cn)

  • 中图分类号: TU973+.16;TU375

EXPERIMENTAL STUDY ON SEISMIC BEHAVIOR OF ASSEMBLED SERRATE-EDGES MONOLITHIC SHEAR WALL WITH CAST-IN-PLACE BOUNDARY ELEMENTS

  • 摘要: 为研究装配整体式齿槽剪力墙的抗震性能及竖向接缝性能,对1片现浇剪力墙和3片齿槽剪力墙进行了拟静力试验,变化参数包括轴压比和剪跨比。试验结果表明:墙体发生弯曲破坏,齿槽剪力墙与现浇剪力墙承载力和刚度基本相当,具有良好的抗震性能,可满足“等同现浇”的性能需求;位移角为1/1000时,齿槽剪力墙竖向接缝保持完好;位移角大于1/500时,竖向接缝两侧墙体发生竖向错动变形。齿槽剪力墙滞回曲线饱满,位移延性系数大于5,具有良好的变形能力;提高轴压比、降低剪跨比,加速了竖向接缝开裂并促进竖缝两侧相对变形的发展;改变轴压比和剪跨比对齿槽剪力墙承载力和变形性能的影响规律与现浇剪力墙相同;较高轴压力作用时,墙体破坏集中于竖向插筋孔区域形成竖向裂缝,墙角压溃区域减小。采用ABAQUS软件进行有限元分析,模拟骨架曲线及破坏形态与试验结果吻合良好;改变轴压比、剪跨比对墙体性能的影响与试验结果一致,增加横向槽孔尺寸、减少横向槽孔内侧尺寸,对墙体力学性能基本无影响。
  • 图  1  横向盲孔剪力墙的预制墙板

    Figure  1.  Panels of precast shear wall with covert holes

    图  2  试件尺寸 /mm

    Figure  2.  Specimen size

    图  3  盲孔预制墙构造 /mm

    Figure  3.  Structure of precast shear wall with covert holes

    图  4  试件CW-01配筋 /mm

    Figure  4.  Reinforcement of specimen CW-01

    图  5  齿槽剪力墙试件配筋 /mm

    Figure  5.  Reinforcement of the serrate-edges monolithic wall

    图  6  试验加载装置

    Figure  6.  Test loading device

    图  7  试验加载装置示意图

    Figure  7.  Test loading device schematic diagram

    图  8  位移计测点布置

    Figure  8.  Arrangement of displacement meters

    图  9  应变测点布置

    Figure  9.  Arrangement of strain gauges

    图  10  试件屈服时破坏形态

    Figure  10.  Failure mode of specimens at yield point

    图  11  试件峰值时破坏形态

    Figure  11.  Failure mode of specimens at peak point

    图  12  试件极限时破坏形态

    Figure  12.  Failure mode of specimens at ultimate point

    图  13  顶点水平力-位移滞回曲线

    Figure  13.  Load-displacement hysteresis loop

    图  14  骨架曲线

    Figure  14.  Skeleton curve

    图  15  试件刚度对比

    Figure  15.  Stiffness comparison of specimens

    图  16  θ-δx曲线

    Figure  16.  θ-δx curve

    图  17  θ-δy曲线

    Figure  17.  θ-δy curve

    图  18  试件耗能对比

    Figure  18.  Energy consumption comparison of specimens

    图  19  各试件水平钢筋应变-荷载曲线

    Figure  19.  Horizontal reinforcement strain-load curve of specimens

    图  20  各试件纵筋应变-荷载曲线

    Figure  20.  Longitudinal reinforcement strain-load curve of specimens

    图  21  荷载-位移曲线

    Figure  21.  Load-displacement curve

    图  22  模型FCW-2.0破坏形态对比

    Figure  22.  Failure mode comparison of model FCW-2.0

    图  23  模型FCW-2.0N破坏形态对比

    Figure  23.  Failure mode comparison of model FCW-2.0N

    图  24  模型FCW-1.5破坏形态对比

    Figure  24.  Failure mode comparison of model FCW-1.5

    图  25  不同轴压比模型的荷载-位移曲线

    Figure  25.  Load-displacement curves of models with different axial compression ratio

    图  26  不同剪跨比模型的荷载-位移曲线

    Figure  26.  Load-displacement curves of models with different shear span ratio

    图  27  模型FCW-1.0破坏形态对比

    Figure  27.  Failure mode of model FCW-1.0

    图  28  模型FCW-2.0K系列示意图 /mm

    Figure  28.  Model FCW-2.0K series

    图  29  不同横向槽孔尺寸模型的荷载-位移曲线

    Figure  29.  Load-displacement curves of models with different transverse groove size

    图  30  模型FCW-2.0T截面图 /mm

    Figure  30.  Model FCW-2.0T section diagram

    图  31  不同横向槽孔构造模型的荷载-位移曲线

    Figure  31.  Load-displacement curves of models with different transverse groove structure

    表  1  试件设计参数

    Table  1.   Design parameters of specimens

    试件编号轴压比轴压力N/kN剪跨比
    CW-010.151343.42.0
    FCW-2.00.151295.12.0
    FCW-2.0N0.252195.92.0
    FCW-1.50.151350.11.5
    下载: 导出CSV

    表  2  混凝土的材料性能

    Table  2.   Material properties of concrete

    试件编号预制混凝土现浇混凝土
    fcup,m/MPafcuc,m/MPa
    CW-0139.28
    FCW-2.040.6236.48
    FCW-2.0N42.5836.48
    FCW-1.539.7539.34
    注:fcup,mfcuc,m分别为预制和现浇混凝土立方体抗压强度平均值。
    下载: 导出CSV

    表  3  钢筋的力学性能

    Table  3.   Mechanical properties of reinforcement

    钢筋型号屈服强度fy/MPa抗拉强度fu/MPa伸长率δ/(%)
    8465.28640.1514.10
    12509.53682.4213.39
    14408.39585.0414.04
    16400.25531.0313.05
    25415.41555.0514.64
    下载: 导出CSV

    表  4  试件屈服点、峰值点、破坏点的特征值

    Table  4.   Characteristic values of yield, peak and failure point of specimens

    试件编号加载方向屈服点峰值点破坏点Δy /HΔm /HΔu /Hμ
    Py/kNΔy/mmPm/kNΔm/mmΔu/mm
    CW-014407.3255439.3664.731/3751/761/458.4
    5378.6766239.9470.10
    平均4898.0060839.6567.42
    FCW-2.04529.1855539.4266.581/3061/761/456.9
    52910.4162839.6967.62
    平均4919.8059239.5667.10
    FCW-2.0N5069.1264730.2051.211/3011/851/565.4
    66210.8279540.0856.98
    平均5849.9772135.1454.10
    FCW-1.56116.6575022.4854.721/2841/751/407.2
    6469.2280537.6158.93
    平均6297.9477830.0556.83
    下载: 导出CSV

    表  5  接缝位置相对变形

    Table  5.   Relative deformation of joint position

    试件编号模拟试验
    水平δx/mm竖向
    δy/mm
    水平δx/mm竖向
    δy/mm
    FCW-2.00.200.520.500.34
    FCW-2.0N0.421.060.751.24
    FCW-1.50.391.730.371.61
    下载: 导出CSV
  • [1] BACHMANN H, STEINLE A. Precast concrete structures [M]. Berlin: Wiley-VCH, 2011.
    [2] 张锡治, 李义龙, 安海玉. 预制装配式混凝土剪力墙结构的研究与展望[J]. 建筑科学, 2014, 30(1): 26 − 32. doi: 10.3969/j.issn.1002-8528.2014.01.006

    ZHANG Xizhi, LI Yilong, AN Haiyu. Present research and prospect of precast concrete shear wall structure [J]. Building Science, 2014, 30(1): 26 − 32. (in Chinese) doi: 10.3969/j.issn.1002-8528.2014.01.006
    [3] KURAMA Y C, SRITHARAN S, FLEISCHMAN R B, et al. Seismic-resistant precast concrete structures: State of the art [J]. Journal of Structural Engineering, 2018, 144(4): 1 − 18.
    [4] HARSH R. Sanghvi. Analysis of precast shear wall connection- state of the art review [J]. International Journal of Research in Engineering and Technology, 2015, 4(2): 767 − 770.
    [5] 苏杨月, 赵锦锴, 徐友全. 装配整体式住宅建造过程质量缺陷研究[J]. 工程管理学报, 2016, 30(4): 18 − 23. doi: 10.13991/j.cnki.jem.2016.04.004

    SU Yangyue, ZHAO Jinkai, XU Youquan. Research of quality defects about industrialized building in construction [J]. Journal of Engineering Management, 2016, 30(4): 18 − 23. (in Chinese) doi: 10.13991/j.cnki.jem.2016.04.004
    [6] 杜红凯, 王世伟, 韩淼, 等. 软索连接装配式混凝土圆孔墙抗震性能试验研究[J]. 土木工程学报, 2020, 53(8): 9 − 15. doi: 10.15951/j.tmgcxb.2020.08.001

    DU Hongkai, WANG Shiwei, HAN Miao, et al. Experimental simulation on seismic behavior of prefabricated concrete circular-hole wall connected by flexible cables [J]. China Civil Engineering Journal, 2020, 53(8): 9 − 15. (in Chinese) doi: 10.15951/j.tmgcxb.2020.08.001
    [7] 王晶秋. 不同轴压比双面叠合剪力墙抗震性能研究 [D]. 大连: 大连理工大学, 2019.

    WANG Jingqiu. Seismic performance of double- superimposed shear wall with different axial force ratio [D]. Dalian: Dalian University of Technology, 2019. (in Chinese)
    [8] 初明进. 一种预制混凝土构件 [P]. 中国: CN201420174904.1, 2014-12-10.

    CHU Mingjin. A precast concrete component [P]. China: CN201420174904.1, 2014-12-10. (in Chinese)
    [9] 张微敬, 杨雷刚, 钱稼茹, 等. 大剪跨比预制空心板剪力墙抗震性能试验研究[J]. 土木工程学报, 2019, 52(6): 1 − 13.

    ZHANG Weijing, YANG Leigang, QIAN Jiaru, et al. Experimental study on seismic performance of precast concrete hollow shear walls with large aspect ratios [J]. China Civil Engineering Journal, 2019, 52(6): 1 − 13. (in Chinese)
    [10] 韩文龙, 钱稼茹, 张微敬, 等. 预制空心板剪力墙抗震性能试验研究[J]. 建筑结构学报, 2020, 41(2): 32 − 41. doi: 10.14006/j.jzjgxb.2017.0735

    HAN Wenlong, QIAN Jiaru, ZHANG Weijing, et al. Experimental study on seismic behavior of precast concrete hollow shear walls [J]. Journal of Building Structures, 2020, 41(2): 32 − 41. (in Chinese) doi: 10.14006/j.jzjgxb.2017.0735
    [11] 初明进, 王博, 刘继良, 等. 榫卯式接缝预制混凝土剪力墙受力性能试验研究[J]. 建筑结构学报, 2021, 42(7): 173 − 182, 222. doi: 10.14006/j.jzjgxb.2019.0631

    CHU Mingjin, WANG Bo, LIU Jiliang, et al. Experimental study on mechanical behaviors of precast concrete shear walls with mortise-tenon joints [J]. Journal of Building Structures, 2021, 42(7): 173 − 182, 222. (in Chinese) doi: 10.14006/j.jzjgxb.2019.0631
    [12] 曹春利, 孙志娟, 刘继良, 等. 低剪跨比的榫卯连接装配整体式剪力墙受力性能数值分析[J]. 工程力学, 2021, 38(增刊): 110 − 118. doi: 10.6052/j.issn.1000-4750.2020.05.S020

    CAO Chunli, SUN Zhijuan, LIU Jiliang, et al. Numerical analysis on mechanical behaviors of assembled monolithic concrete shear walls with mortise-tenon joints and low shear span ratio [J]. Engineering Mechanics, 2021, 38(Suppl): 110 − 118. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.05.S020
    [13] 刘继良, 王宝民, 初明进, 等. 不同轴压比下榫卯接缝装配整体式剪力墙受弯性能试验研究[J]. 工程力学, 2021, 38(11): 79 − 87. doi: 10.6052/j.issn.1000-4750.2020.10.0740

    LIU Jiliang, WANG Baomin, CHU Mingjin, et al. Experimental study on flexural behavior of monolithic precast concrete shear walls with mortise-tenon joints [J]. Engineering Mechanics, 2021, 38(11): 79 − 87. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.10.0740
    [14] JGJ 3−2010, 高层建筑混凝土结构技术规程 [S]. 北京: 中国建筑工业出版社, 2010.

    JGJ 3−2010, Technical specification for concrete structures of tall building [S]. Beijing: China Architecture & Building Press, 2010. (in Chinese)
    [15] 冯鹏, 强翰霖, 叶列平. 材料、构件、结构的“屈服点”定义与讨论[J]. 工程力学, 2017, 34(3): 36 − 46. doi: 10.6052/j.issn.1000-4750.2016.03.0192

    FENG Peng, QIANG Hanlin, YE Lieping. Discussion and definition on yield points of materials, members and structures [J]. Engineering Mechanics, 2017, 34(3): 36 − 46. (in Chinese) doi: 10.6052/j.issn.1000-4750.2016.03.0192
    [16] JGJ/T 101−2015, 建筑抗震试验规程 [S]. 北京: 中国建筑工业出版社, 2015.

    JGJ/T 101−2015, Specification for seismic test of buildings [S]. Beijing: China Architecture & Building Press, 2015. (in Chinese)
    [17] GB 50011−2010, 建筑抗震设计规范 [S]. 北京: 中国建筑工业出版社, 2010.

    GB 50011−2010, Code for seismic design of buildings [S]. Beijing: China Architecture & Building Press, 2010. (in Chinese)
    [18] GB 50010−2010, 混凝土结构设计规范 [S]. 北京: 中国建筑工业出版社, 2010.

    GB 50010−2010, Code for design of concrete structures [S]. Beijing: China Architecture & Building Press, 2010. (in Chinese)
    [19] 刘立军, 贾明明, 于晓辉. 箍筋约束混凝土的本构关系研究[J]. 工业建筑, 2012, 42(增刊 1): 188 − 191.

    LIU Lijun, JIA Mingming, YU Xiaohui. Study of constitutive relations for steel-hoop-confined concrete material [J]. Industrial Construction, 2012, 42(Suppl 1): 188 − 191. (in Chinese)
    [20] 过镇海. 钢筋混凝土原理 [M]. 北京: 清华大学出版社, 2013.

    GUO Zhenhai. Reinforced concrete theory [M]. Beijing: Tsinghua University Press, 2013. (in Chinese)
    [21] 周剑, 任宝双, 侯建群. 预制混凝土空心模剪力墙受剪性能有限元模拟[J]. 建筑结构, 2016, 46(增刊 2): 443 − 447. doi: 10.19701/j.jzjg.2016.s2.094

    ZHOU Jian, REN Baoshuang, HOU Jianqun. Finite element simulation of shear behaviors of shear wall with precast concrete hollow mould [J]. Building Structure, 2016, 46(Suppl 2): 443 − 447. (in Chinese) doi: 10.19701/j.jzjg.2016.s2.094
    [22] ACI 318 Committee. Building code requirements for structural concrete and commentary [S]. Farmington Hills, MI: American Concrete Institute, 2019.
    [23] 赵作周, 周剑, 侯建群, 等. 上下层插筋连接预制混凝土空心模剪力墙有限元分析[J]. 工程力学, 2017, 34(1): 117 − 129. doi: 10.6052/j.issn.1000-4750.2015.05.0411

    ZHAO Zuozhou, ZHOU Jian, HOU Jianqun, et al. Finite element analysis of shear walls with precast concrete hollow moulds and splice rebar connection between the upper and lower floors [J]. Engineering Mechanics, 2017, 34(1): 117 − 129. (in Chinese) doi: 10.6052/j.issn.1000-4750.2015.05.0411
    [24] BS EN 1992-1-1, British Standards Institution. Eurocode 2: Design of concrete structures: Part 1: General rules and rules for buildings [S]. London: British Standards Institution, 2004.
    [25] 何伟. 新老混凝土界面粘结强度的研究 [D]. 长沙: 湖南大学, 2005.

    HE Wei. The research on the interfacial bond strength of new-to-old concrete [D]. Changsha: Hunan University, 2005. (in Chinese)
  • 加载中
图(31) / 表(5)
计量
  • 文章访问数:  145
  • HTML全文浏览量:  43
  • PDF下载量:  32
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-16
  • 修回日期:  2022-07-09
  • 网络出版日期:  2022-07-29
  • 刊出日期:  2023-11-25

目录

    /

    返回文章
    返回