CALCULATION ON COMPRESSION-BENDING CAPACITY OF THE STRC COLUMN WITH BUILT-IN NON-THROUGH SECTION STEEL
-
摘要: 采用内置型钢短柱对钢管约束钢筋混凝土(STRC)柱节点进行增强。为明确该节点中内置非贯通型钢STRC柱的控制截面位置及压弯承载力,进行了内置不同长度型钢STRC柱及无型钢对比试件的拟静力试验及有限元模拟研究,分析了试件的受力机理及压弯承载力,探讨了型钢长度和钢管约束等因素的影响。研究结果表明:随着内置型钢长度增加,破坏截面有从型钢-混凝土过渡截面转移至柱根的趋势;增大钢管径厚比会削弱其抗弯贡献,从而减小过渡截面压弯承载力,影响破坏截面位置。基于试验及有限元分析结果,提出柱根及过渡截面压弯承载力计算模型,建立内置型钢临界长度的确定方法,研究结果为STRC柱的设计及节点中型钢的参数确定提供理论依据。
-
关键词:
- 钢管约束钢筋混凝土(STRC)柱 /
- 内置非贯通型钢 /
- 抗震性能 /
- 数值模拟 /
- 压弯承载力
Abstract: The steel tubed reinforced concrete (STRC) column joints are strengthened using built-in section steel. To clarify the position of control section and compression-bending capacity of the STRC column with built-in non through section steel in the joint, the quasi-static test and finite element simulation were carried out on the STRC columns with different lengths of built-in section steel and the comparison specimen without section steel. The mechanical mechanism and bearing capacity of the specimens were analyzed, and the effects of the length of section steel and confinement of steel tube were discussed. The results show that with the increase of the length of the built-in section steel, the failure section tends to transfer from the steel-concrete transition section to the column root. Increasing the diameter thickness ratio of steel tube will reduce the compression-bending capacity of steel tube and transition section and then affect the location of failure section. Based on the test and finite element analysis results, the calculation models of compression bending capacity of the column root and transition section are proposed, and the determination method of critical length of section steel is established. The research results provide a theoretical basis for the design of STRC column and joint with built-in non-through section steel. -
表 1 试件主要设计参数
Table 1. Parameters of specimens
试件编号 D/mm t/mm h×b×t1×t2/mm l/mm nt fcu/MPa fyt/MPa fys/MPa fyv/MPa fa/MPa Pue/kN Pus/kN Pue/ Pus STRC-0 273 3 130×100×9×6 0 0.5 37.8 348.1 404.2 323.3 369.3 109.51 103.59 1.06 STRC-1 273 3 130×100×9×6 100 0.5 37.8 348.1 404.2 323.3 369.3 114.35 105.67 1.08 STRC-2 273 3 130×100×9×6 250 0.5 37.8 348.1 404.2 323.3 369.3 141.01 138.04 1.02 STRC-3 273 3 130×100×9×6 450 0.5 37.8 348.1 404.2 323.3 369.3 150.75 154.06 0.98 注:试件编号中0、1、2、3分别为无型钢以及型钢内置长度为100 mm、250 mm、450 mm;h、b、t1、t2分别为型钢腹板长度、翼缘宽度、翼缘厚度、腹板厚度;nt为试验轴压比,nt=N/(fcckAc),N为试验轴压力,fcck为考虑钢管约束作用的混凝土轴心抗压强度标准值,按规范[13]取,Ac为核心混凝土截面面积。fyt、fys、fyv、fa分别为实测钢管、纵筋、箍筋、型钢屈服强度;Pue和Pus分别为试件试验和有限元计算所得水平峰值荷载。 -
[1] TOMII M, SAKINO K, XIAO Y, et al. Earthquake resisting hysteretic behavior of reinforced concrete short columns confined by steel tube [C]// Proceeding of the International Speciality Concference on Concrete Filled Steel Tubular Structures. Harbin: Harbin Institute of Technology, 1985: 119 − 125. [2] O'SHEA M D, BRIDGE R Q. Design of circular thin-walled concrete filled steel tubes [J]. Journal of Structural Engineering, 2000, 126(11): 1295 − 1303. doi: 10.1061/(ASCE)0733-9445(2000)126:11(1295) [3] 张素梅, 刘界鹏, 马乐, 等. 圆钢管约束高强混凝土轴压短柱的试验研究与承载力分析[J]. 土木工程学报, 2007, 40(3): 24 − 31, 68.ZHANG Sumei, LIU Jiepeng, MA Le, et al. Axial compression test and analysis of circular tube confined HSC stub columns [J]. China Civil Engineering Journal, 2007, 40(3): 24 − 31, 68. (in Chinese) [4] 周绪红, 刘界鹏, 张素梅. 圆钢管约束钢筋混凝土短柱的轴压力学性能 [J]. 工程力学, 2009, 26(11): 53 − 59.ZHOU Xuhong, LIU Jiepeng, ZHANG Sumei. Behavior of circular tubed reinforced concrete stub columns under axial compression [J]. Engineering Mechanics. 2009, 26(11): 53 − 59. ( in Chinese) [5] XU T X, LIU J P, WANG X D, et al. Behaviour of short CFRP-steel composite tubed reinforced normal and high strength concrete columns under eccentric compression [J]. Engineering Structures, 2020, 205: 110096. doi: 10.1016/j.engstruct.2019.110096 [6] ZHANG S M, LI X Z, LI J, et al. Behavior comparison of seven-types of steel-concrete composite stub columns under axial compression [J]. Engineering Structures, 2022, 252: 113637. doi: 10.1016/j.engstruct.2021.113637 [7] SUN Y, SAKINO K. Earthquake-resisting performance of R/C columns confined by square steel tubes: Part 1 Columns under high axial load [J]. Architectural Institute of Japan, 1997, 62(501): 93 − 101. [8] SUN Y, SAKINO K, YASUDA K, et al. Earthquake-resisting performance of R/C columns confined by square steel tubes: Part 2 Effects of wall thickness of steel tube [J]. Architectural Institute of Japan, 2000, 65(531): 133 − 140. [9] SUN Y, SAKINO K, YASUDA K, et al. Earthquake-resisting performance of R/C columns confined by square steel tubes: Part 3 Effects of shear span ratio of column [J]. Architectural Institute of Japan, 2001, 66(547): 129 − 136. [10] 周绪红, 张素梅, 刘界鹏. 钢管约束钢筋混凝土压弯构件滞回性能试验研究与分析[J]. 建筑结构学报, 2008, 29(5): 75 − 84. doi: 10.3321/j.issn:1000-6869.2008.05.010ZHOU Xuhong, ZHANG Sumei, LIU Jiepeng. Seismic behavior of steel tube confined reinforced concrete(RC) beam-columns [J]. Journal of Building Structures, 2008, 29(5): 75 − 84. (in Chinese) doi: 10.3321/j.issn:1000-6869.2008.05.010 [11] 甘丹, 周绪红, 刘界鹏, 等. 圆钢管约束钢筋混凝土短柱往复荷载作用下的组合效应[J]. 建筑结构学报, 2015, 36(增刊 1): 222 − 229.GAN Dan, ZHOU Xuhong, LIU Jiepeng, et al. Composite response of circular tubed reinforced concrete short columns under cyclic lateral load [J]. Journal of Building Structures, 2015, 36(Suppl 1): 222 − 229. (in Chinese) [12] 丁志强, 傅先珺, 白超, 等. 钢管约束型钢混凝土柱施工技术[J]. 结构施工, 2017, 39(7): 1003 − 1010.DING Zhiqiang, FU Xianjun, BAI Chao, et al. Construction technology for profile steel and concrete-filled steel tube column [J]. Structural Construction, 2017, 39(7): 1003 − 1010. (in Chinese) [13] JGJ/T 471−2019, 钢管约束混凝土结构技术标准[S]. 北京: 中国建筑工业出版社, 2019.JGJ/T 471−2019, Technical standard for steel tube confined concrete structure [S]. Beijing: China Architecture & Building Press, 2019. ( in Chinese) [14] 江见鲸, 陆新征. 混凝土结构有限元分析[M]. 北京: 清华大学出版社, 2018.JIANG Jianjing, LU Xinzheng. Finit element analysis of concrete strucutres [M]. Beijing: Tsinghua University Press, 2018. (in Chinese) [15] 党像梁, 吕西林, 钱江, 等. 底部开水平缝预应力自复位剪力墙有限元模拟[J]. 工程力学, 2017, 34(6): 51 − 63. doi: 10.6052/j.issn.1000-4750.2015.12.1021DANG Xiangliang, LYU Xilin, QIAN Jiang, et al. Finite element simulation of self-centering pre-stressed shear walls with horizontal bottom slits [J]. Engineering Mechanics, 2017, 34(6): 51 − 63. (in Chinese) doi: 10.6052/j.issn.1000-4750.2015.12.1021 [16] YAN B, LIU J P, ZHOU X H. Axial load behavior and stability strength of circular tubed steel reinforced concrete (SRC) columns [J]. Steel and Composite Structures, 2017, 25(5): 545 − 556. [17] 赵卫平, 雷永旺, 王振兴, 等. 钢管混凝土中内配钢骨与混凝土黏结性能试验[J]. 哈尔滨工业大学学报, 2020, 52(8): 121 − 130. doi: 10.11918/202002049ZHAO Weiping, LEI Yongwang, WANG Zhenxing, et al. Experimental study on bond performance between internal steel and concrete in concrete filled steel tube [J]. Journal of Harbin Institute of Technology, 2020, 52(8): 121 − 130. (in Chinese) doi: 10.11918/202002049 [18] YAN B, ZHOU X H, LIU J P. Behavior of circular tubed steel- reinforced-concrete slender columns under eccentric compression [J]. Journal of Constructional Steel Research, 2019, 155: 342 − 354. doi: 10.1016/j.jcsr.2018.11.018 [19] 齐连训, 罗云标, 严加宝, 等. 高变形能力螺栓抗剪连接件抗剪承载力理论分析与验证[J]. 工程力学, 2021, 38(10): 74 − 82. doi: 10.6052/j.issn.1000-4750.2020.09.0678QI Lianxun, LUO Yunbiao, YAN Jiabao, et al. Theoretical analysis and verification on shear capacity of high -deformability bolted shear connector [J]. Engineering Mechanics, 2021, 38(10): 74 − 82. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.09.0678 [20] 赵根田, 侯智译, 高鹏, 等. 拟静力作用下群钉连接件抗剪性能研究[J]. 工程力学, 2020, 37(7): 201 − 213. doi: 10.6052/j.issn.1000-4750.2019.09.0513ZHAO Gentian, HOU Zhiyi, GAO Peng, et al. Study on shear performance of group stud connector under the quasi -static load [J]. Engineering Mechanics, 2020, 37(7): 201 − 213. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.09.0513 -