留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

垂索-辅助索系统的建模与固有特性

孙测世 焦德望 赵碧航 谭超

孙测世, 焦德望, 赵碧航, 谭超. 垂索-辅助索系统的建模与固有特性[J]. 工程力学, 2023, 40(11): 168-178. doi: 10.6052/j.issn.1000-4750.2022.02.0136
引用本文: 孙测世, 焦德望, 赵碧航, 谭超. 垂索-辅助索系统的建模与固有特性[J]. 工程力学, 2023, 40(11): 168-178. doi: 10.6052/j.issn.1000-4750.2022.02.0136
SUN Ce-shi, JIAO De-wang, ZHAO Bi-hang, TAN Chao. MODELING AND INHERENT CHARACTERISTICS OF SAGGED-CABLE-CROSSTIE SYSTEM[J]. Engineering Mechanics, 2023, 40(11): 168-178. doi: 10.6052/j.issn.1000-4750.2022.02.0136
Citation: SUN Ce-shi, JIAO De-wang, ZHAO Bi-hang, TAN Chao. MODELING AND INHERENT CHARACTERISTICS OF SAGGED-CABLE-CROSSTIE SYSTEM[J]. Engineering Mechanics, 2023, 40(11): 168-178. doi: 10.6052/j.issn.1000-4750.2022.02.0136

垂索-辅助索系统的建模与固有特性

doi: 10.6052/j.issn.1000-4750.2022.02.0136
基金项目: 国家自然科学基金项目(51808085)
详细信息
    作者简介:

    焦德望(1997−),男,山东聊城人,硕士生,主要从事桥梁非线性动力学研究(E-mail: jiaodw126@163.com)

    赵碧航(1996−),男,贵州遵义人,硕士生,主要从事桥梁非线性动力学研究(E-mail: 1050126836@qq.com)

    谭 超(1995−),男,重庆人,硕士生,主要从事桥梁非线性动力学研究(E-mail: 13075423708@163.com)

    通讯作者:

    孙测世(1985−),男,湖南益阳人,副教授,博士,硕导,主要从事桥梁非线性动力学研究(E-mail: suncs@hnu.edu.cn)

  • 中图分类号: U441+.3

MODELING AND INHERENT CHARACTERISTICS OF SAGGED-CABLE-CROSSTIE SYSTEM

  • 摘要: 辅助索被认为是长索振动控制中一种富有潜力的手段。为研究安装辅助索后系统的固有特性及其随关键参数的变化规律,建立了由N根垂索和M道辅助索组成的索网系统的模型,得到其无量纲运动方程,引入边界条件、连续条件和平衡条件进行求解。将模型退化到双索-辅助索系统,求得其无量纲频率方程。采用数值分析研究了Irvine参数λ2、辅助索刚度和位置、波速比η等关键参数对系统频率和模态的影响。研究表明,当两索参数相同时,垂度仅影响反相频率,故同相振动和反相振动的ω-λ2曲线分别表现为“穿越”(cross-over)现象和“转向”(veering)现象。当λ2为某特定值时,任意辅助索刚度下的一阶反相振动频率均等于一阶同相频率,从而频率曲线均通过第一个“穿越”点。两索参数相同时,增大辅助索刚度仅提高系统反相振动频率,但其增幅不超过1。两索波速不同时,系统所有频率均随波速差异增大而发生往高阶的“跳阶”(jumping)现象,且频率阶次越高“跳阶”次数越多。
  • 图  1  垂索-辅助索系统

    Figure  1.  The sagged-cable-crosstie system

    图  2  ω-$\lambda_j^2 $曲线

    Figure  2.  Curves of ω-$\lambda_j^2 $

    图  3  第一个“穿越”点附近频率曲线和典型模态图

    Figure  3.  Frequency curves and typical modes near the first cross-over point

    图  4  ω的三维曲面图

    Figure  4.  The 3-D surfaces of ω

    图  5  典型模态

    Figure  5.  Typical modes

    图  6  ω-η曲线图及典型模态图

    Figure  6.  Curves of ω-η and typical modes

    表  1  模态频率对比

    Table  1.   Comparison of frequencies

    频率阶次$\lambda_j^2=2 $$\lambda_j^2=0 $对应模态
    本文/Hz文献[29]/HzANSYS/Hz本文/Hz文献[12]/HzANSYS/Hz
    11.46301.4631.46301.35621.35621.3562一阶同相
    21.86961.8701.86961.80821.80821.8085一阶反相
    32.71242.7122.71242.71242.71242.7133二阶同相
    43.61653.6173.61673.61653.61653.6181二阶反相
    54.07274.07314.06854.06854.0705三阶同相
    65.43415.43485.47245.42475.4278三阶反相
    75.42475.42555.42475.42475.4278四阶同相
    85.42475.42555.42475.42475.4278四阶反相
    96.78186.78316.78096.78096.7852五阶同相
    107.23307.23447.23307.23307.2377五阶反相
    注:“−”表示文献[29]未给出该数据。
    下载: 导出CSV

    表  2  拉索参数[33]

    Table  2.   Cable parameters

    索号索长/m索力/kN单位长度质量/(kg·m−1)
    1154.08383170.1
    2139.70335170.1
    3125.78320465.2
    4112.28273252.9
    599.38239452.9
    下载: 导出CSV

    表  3  模态频率对比

    Table  3.   Comparison of frequencies

    频率阶次本文/Hz文献[33]/HzANSYS/Hz
    11.01681.021.0112
    21.75431.801.7441
    31.96181.981.9532
    42.05682.082.0507
    52.11272.122.1081
    62.13222.152.1328
    72.17182.182.1726
    82.18312.192.1832
    92.20442.222.2046
    102.27582.282.2789
    下载: 导出CSV
  • [1] 康厚军, 赵跃宇, 王涛. 阻尼对斜拉索大幅振动的影响[J]. 湖南大学学报(自然科学版), 2008, 35(12): 1 − 6.

    KANG Houjun, ZHAO Yueyu, WANG Tao. Influence of damping on large amplitude vibration of stay cables [J]. Journal of Hunan University (Natural Science Edition), 2008, 35(12): 1 − 6. (in Chinese)
    [2] 孙一飞, 刘庆宽, 李震, 等. 非标准圆斜拉索风致振动时频特征研究[J]. 工程力学, 2021, 38(增刊): 52 − 57. doi: 10.6052/j.issn.1000-4750.2020.05.S009

    SUN Yifei, LIU Qingkuan, LI Zhen, et al. Study on time-frequency characteristics of wind-induced vibration of non-standard circular stay cables [J]. Engineering Mechanics, 2021, 38(Suppl): 52 − 57. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.05.S009
    [3] 郑云飞, 刘庆宽, 战启芳, 等. 螺旋线参数对斜拉索气动特性影响的试验研究[J]. 工程力学, 2020, 37(增刊): 301 − 306. doi: 10.6052/j.issn.1000-4750.2019.04.S057

    ZHENG Yunfei, LIU Qingkuan, ZHAN Qifang, et al. Experimental study on the influence of helix parameters on the aerodynamic characteristics of stay cables [J]. Engineering Mechanics, 2020, 37(Suppl): 301 − 306. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.04.S057
    [4] 王慧萍, 孙利民, 胡晓伦. 基于可变摩擦阻尼力的斜拉索半主动控制算法[J]. 工程力学, 2015, 32(11): 94 − 99. doi: 10.6052/j.issn.1000-4750.2014.04.0336

    WANG Huiping, SUN Limin, HU Xiaolun. Semi active control algorithm of stay cable based on variable friction damping force [J]. Engineering Mechanics, 2015, 32(11): 94 − 99. (in Chinese) doi: 10.6052/j.issn.1000-4750.2014.04.0336
    [5] 刘菁, 梁栋, 杨柳, 等. 齿轮齿条式惯质粘滞阻尼器的拉索减振机理研究[J]. 工程力学, 2023, 40(1): 155 − 167. doi: 10.6052/j.issn.1000-4750.2021.08.0597

    LIU Jing, LIANG Dong, YANG Liu, et al. Study on cable damping mechanism of rack and pinion inertial viscous damper [J]. Engineering Mechanics, 2023, 40(1): 155 − 167. (in Chinese) doi: 10.6052/j.issn.1000-4750.2021.08.0597
    [6] 孙利民, 狄方殿, 陈林, 等. 考虑垂度影响的拉索-双粘滞阻尼器系统振动分析[J]. 工程力学, 2022, 39(8): 49 − 60. doi: 10.6052/j.issn.1000-4750.2021.04.0262

    SUN Limin, DI Fangdian, CHEN Lin, et al. Vibration analysis of cable double viscous damper system considering sag effect [J]. Engineering Mechanics, 2022, 39(8): 49 − 60. (in Chinese) doi: 10.6052/j.issn.1000-4750.2021.04.0262
    [7] 刘菁, 梁栋. 垂度拉索-惯质阻尼器体系的减振分析[J]. 振动与冲击, 2021, 40(16): 29 − 38.

    LIU Jing, LIANG Dong. Vibration reduction analysis of inertia damper system with deflection cable [J]. Vibration and Shock, 2021, 40(16): 29 − 38. (in Chinese)
    [8] KRENK S, NIELSEN S. Vibrations of a shallow cable with a viscous damper [J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. 2002, 458(2018): 339 − 357
    [9] HE X, CAI C, WANG Z, et al. Experimental verification of the effectiveness of elastic cross-ties in suppressing wake-induced vibrations of staggered stay cables [J]. Engineering Structures, 2018, 167: 151 − 165. doi: 10.1016/j.engstruct.2018.04.033
    [10] CARACOGLIA L, JONES N P. In-plane dynamic behavior of cable networks. Part 1: Formulation and basic solutions [J]. Journal of Sound and Vibration, 2005, 279(3/4/5): 969 − 991. doi: 10.1016/j.jsv.2003.11.058
    [11] CARACOGLIA L, JONES N P. In-plane dynamic behavior of cable networks. Part 2: Prototype prediction and validation [J]. Journal of Sound and Vibration, 2005, 279(3/4/5): 993 − 1014. doi: 10.1016/j.jsv.2003.11.059
    [12] AHMAD J, CHENG S. Effect of cross-link stiffness on the in-plane free vibration behaviour of a two-cable network [J]. Engineering Structures, 2013, 52: 570 − 580. doi: 10.1016/j.engstruct.2013.03.018
    [13] AHMAD J, CHENG S. Analytical study on in-plane free vibration of a cable network with straight alignment rigid cross-ties [J]. Journal of Vibration and Control, 2013, 21(7): 1299 − 1320.
    [14] AHMAD J, CHENG S, GHRIB F. An analytical approach to evaluate damping property of orthogonal cable networks [J]. Engineering Structures, 2014, 75(15): 225 − 236.
    [15] GIACCU G F, CARACOGLIA L. Effects of modeling nonlinearity in cross-ties on the dynamics of simplified in-plane cable networks [J]. Structural Control and Health Monitoring, 2012, 19: 348 − 369. doi: 10.1002/stc.435
    [16] GIACCU G F, CARACOGLIA L. Generalized power-law stiffness model for nonlinear dynamics of in-plane cable networks [J]. Journal of Sound and Vibration, 2013, 332(8): 1961 − 1981. doi: 10.1016/j.jsv.2012.12.006
    [17] GIACCU G F, CARACOGLIA L, BARBIELLINI B. Modeling “unilateral” response in the cross-ties of a cable network: Deterministic vibration [J]. Journal of Sound and Vibration, 2014, 333(19): 4427 − 4443. doi: 10.1016/j.jsv.2014.04.030
    [18] HE X, PENG Y, JING H, et al. Parametric studies on the dynamic properties of stay cables interconnected with uniformly distributed cross-ties [J]. Advances in Structural Engineering, 2019, 22(4): 882 − 892. doi: 10.1177/1369433218786544
    [19] CHEN W, ZHANG Z, ZHEN X, et al. Effect of bending stiffness on the in-plane free vibration characteristics of a cable network [J]. Journal of Mechanical Science and Technology, 2020, 34(11): 4439 − 4463. doi: 10.1007/s12206-020-1006-6
    [20] SUN L, HONG D, CHEN L. Cables interconnected with tuned inerter damper for vibration mitigation [J]. Engineering Structures, 2017, 151(15): 57 − 67.
    [21] ZHOU P, LIU M, XIAO H G, et al. Feasibility of using a negative stiffness damper to two interconnected stay cables for damping enhancement [J]. International Journal of Structural Stability and Dynamics, 2019, 19(1): 1 − 22.
    [22] ZHOU H, YANG H, PENG Y, et al. Damping and frequency of twin cables with a crosslink and a viscous damper [J]. Smart Structures and Systems, 2019, 23(6): 669 − 682.
    [23] ZHOU H, WU Y, LI L, et al. Free vibrations of a two-cable network inter-supported by cross-links extended to ground [J]. Smart Structures and Systems, 2019, 23(6): 653 − 667.
    [24] 周海俊, 陈朝骏, 杨夏, 等. 形状记忆合金辅助索-简化索网模型振动特性的数值模拟及试验研究. 重庆交通大学学报(自然科学版) [J]. 2014, 33(1): 8 − 11.

    ZHOU Haijun, CHEN Chaojun, YANG Xia, et al. Numerical simulation and experimental study on vibration characteristics of shape memory alloy assisted cable-simplified cable net model [J]. Journal of Chongqing Jiaotong University (Natural Science Edition), 2014, 33 (1): 8 − 11. (in Chinese)
    [25] YANG X, ZHOU H J, YANG X, et al. Shape memory alloy strands as cross-ties: Fatigue behavior and model-cable net tests [J]. Engineering Structures, 2021, 245: 1 − 13.
    [26] SHI F, ZHOU Y, OZBULUT O E, et al. Development and experimental validation of anchorage systems for shape memory alloy cables [J]. Engineering Structures, 2021, 228: 1 − 13.
    [27] SUN L, HONG D, CHEN L. In‐plane free vibrations of shallow cables with cross-ties [J]. Structural Control and Health Monitoring, 2019, 26(10): 1 − 20.
    [28] CHEN L, XU Y, SUN L. A component mode synthesis method for reduced-order modeling of cable networks in cable-stayed bridges [J]. Journal of Sound and Vibration, 2020, 491(20): 1 − 24.
    [29] AHMAD J. In-plane linear dynamic behavior and impact of key system parameters of low-sagged cable network [J]. Journal of Sound and Vibration, 2021, 14(18): 1 − 20.
    [30] DI F, CHEN L, SUN L. Free vibrations of hybrid cable networks with external dampers and pretensioned cross-ties [J]. Structural Control and Health Monitoring, 2021, 156: 1 − 24.
    [31] DI F, SUN L, CHEN L. In‐plane dynamic behaviors of two-cable networks with a pretensioned cross-tie [J]. Structural Control and Health Monitoring. 2021, 2755: 1 − 24.
    [32] IRVINE H M. Cable structures [M]. New York: The Massachusetts Institute of Technology Press, 1981.
    [33] AHMAD J, CHENG S, GHRIB F. Impact of cross-tie design on the in-plane stiffness and local mode formation of cable networks on cable-stayed bridges [J]. Journal of Sound and Vibration, 2016, 363: 141 − 155. doi: 10.1016/j.jsv.2015.09.052
    [34] GATTULLI V, LEPIDI M. Localization and veering in the dynamics of cable-stayed bridges [J]. Computers and Structures, 2007, 85(21/22): 1661 − 1678.
    [35] 周海俊, 朱亚峰, 杨夏, 等. 拉索-弹簧系统的振动特性研究 [J]. 振动工程学报, 2012, 25(5): 522 − 526.

    ZHOU Haijun, ZHU Yafeng, YANG Xia, et al. Study on vibration characteristics of cable spring system [J]. Journal of Vibration Engineering, 2012, 25 (5): 522 − 526. (in Chinese)
    [36] 禹见达, 张湘琦, 于浩, 等. 多索复合阻尼索 [P]. 湖南: CN206408524U, 2017-08-15.

    YU Jianda, ZHANG Xiangqi, YU Hao, et al. Multi-cable composite damping cable [P]. Hunan: CN 206408524U, 2017-08-15. (in Chinese)
    [37] 禹见达, 唐伊人, 张湘琦, 等. 复合阻尼索设计及减振性能试验研究 [J]. 振动工程学报, 2018, 31(4): 591 − 598.

    YU Jianda, TANG Yiren, ZHANG Xiangqi, et al. Design of composite damping cable and experimental study on its vibration reduction performance [J]. Journal of Vibration Engineering, 2018, 31 (4): 591 − 598. (in Chinese)
    [38] YU J, DUAN Z, ZHANG X, et al. Wind-induced vibration control of high-rise structures using compound damping cables [J]. Shock and Vibration, 2021, 2021: 1 − 9.
  • 加载中
图(6) / 表(3)
计量
  • 文章访问数:  262
  • HTML全文浏览量:  74
  • PDF下载量:  59
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-09
  • 修回日期:  2022-06-02
  • 网络出版日期:  2022-06-10
  • 刊出日期:  2023-11-25

目录

    /

    返回文章
    返回