EFFECT OF PRECAST FILLED WALL WITH POLYSTYRENE PLATE HORIZONTAL JOINT ON SEISMIC PERFORMANCE OF SHEAR WALLS
-
摘要: 为研究水平接缝设置聚苯板的预制填充墙对剪力墙抗震性能影响,完成了4个尺寸相同的剪力墙试件拟静力试验,其中3个试件两侧为现浇剪力墙、中间为水平接缝设置聚苯板的预制填充墙,1个试件为用作对比的整体现浇剪力墙。试验结果表明:4个试件的破坏形态都是整墙正截面受压破坏,但中间为预制填充墙的试件,其两侧现浇墙与预制填充墙结合面开裂、竖向裂缝贯通墙高,中间预制填充墙裂缝明显较少,且现浇墙两端均设置约束边缘构件的试件中间预制填充墙的裂缝更少。试件的极限位移角为1/83~1/50。与现浇剪力墙相比,中间为预制填充墙的剪力墙试件屈服刚度降低了19.4%~61.6%,峰值刚度降低了37.8%~55.6%,表明水平接缝设置聚苯板的预制填充墙可以有效降低刚度。中间为预制填充墙的剪力墙试件的峰值水平力试验值小于现浇剪力墙,其偏心受压承载力仍可按整墙计算,但不计入预制填充墙的竖向分布钢筋。采用有限元分析程序ABAQUS,对试件进行非线性数值模拟及参数分析。结果表明:随着预制填充墙中水平接缝设置的聚苯板厚度增加,水平承载力及刚度降低,变形能力有所提高;随着两侧现浇剪力墙长度减小,水平承载力及刚度降低,变形能力显著提高。Abstract: In order to study the effect of precast filled wall with polystyrene plate horizontal joint on the seismic performance of shear wall, quasi-static tests of 4 pieces of shear wall specimen with the same size were conducted. Three specimens are shear wall specimens with cast-in-place walls at both ends and precast walls with polystyrene board horizontal joint in the middle, and the fourth specimen is cast-in-place shear wall. The test results show that the failure pattern of the four specimens are compression failure of the normal section of the whole wall, but the shear wall specimen with polystyrene plate horizontal joint has vertical cracks through the joint surface of the cast-in-place wall and the precast wall, while the cracks in the middle precast filled wall are significantly less, and the cracks in the middle precast filled wall of the specimen with boundary elements at both ends of the cast-in-place wall are even less. The ultimate drift ratio of the specimens ranges from 1/83 to 1/50. Compared with the cast-in-place shear wall, the yield stiffness of the shear wall specimens with polystyrene plate horizontal joint decreases by 19.4%~61.6%, and the peak stiffness decreases by 37.8%~55.6%, indicating that the precast filled wall with horizontal joint polystyrene plate can effectively reduce the stiffness. The measured peak lateral load of specimens with precast filled wall in the middle is less than that of cast-in-place shear wall, and its eccentric carrying capacity can still be calculated as the whole wall, but the vertically distributed reinforcement of the precast wall is not included. Using the finite element analysis program ABAQUS, the nonlinear numerical simulation and parameter analysis of the specimens were carried out.The simulation results show that the lateral carrying capacity and stiffness decrease, and the deformation capacity increases with the thickness of the polystyrene plate. The lateral carrying capacity and stiffness decrease, and the deformation capacity increases significantly with the decrease of the length of the cast-in-place walls on both sides.
-
Key words:
- precast filled wall /
- polystyrene plate /
- quasi-static test /
- seismic performance /
- horizontal joint
-
表 1 试件配筋表
Table 1. Reinforcement of specimens
试件
编号纵筋 箍筋 竖向分
布筋水平分
布筋拉筋 W1~W4 6 14 10@100 8@150 12@200 8@600表 2 钢筋材料力学性能
Table 2. Material properties of steel bars
直径d/mm 屈服强度fy/MPa 抗拉强度fu/MPa 屈服应变εy/(×10−6) 8 436 650 2180 10 453 641 2265 12 395 606 1975 14 450 636 2250 表 3 试件的开裂荷载、屈服荷载、峰值荷载
试件编号 开裂荷载Fc/kN 名义屈服荷载Fy/kN 峰值荷载Fp/kN 剪力墙抗弯承载力
水平力Fm/kNFp/Fm + − 平均值 + − 平均值 + − 平均值 W1 53.8 54.3 54.1 1146.8 725.7 936.3 1527.6 1590.6 1558.8 1346.9 1.16 W2 45.7 81.9 63.8 1285.2 1163.2 1224.2 1696.9 1635.1 1666.0 1346.9 1.24 W3 49.8 58.3 54.1 1250.7 1303.9 1277.3 1670.7 1652.1 1661.5 1567.8 1.06 W4 502.6 355.3 429.0 1458.9 1499.1 1479.0 1876.8 1866.8 1871.8 1592.7 1.17 表 4 试件不同阶段的变形值及延性系数
试件 屈服位移Uy/mm 屈服位移角θy 峰值位移Up/mm 峰值位移角θp 极限位移Uu/mm 极限位移角θu 延性系数μ W1 + 13.50 1/148 30.23 1/66 40.37 1/50(2.0%) 2.99 − 5.46 1/366 19.18 1/104 38.88 1/51(1.9%) 7.12 平均值 9.48 1/211 24.71 1/81 39.63 1/50(2.0%) 4.18 W2 + 7.07 1/283 28.89 1/69 35.15 1/57(1.8%) 4.97 − 5.73 1/349 19.02 1/105 33.47 1/60(1.7%) 5.84 平均值 6.40 1/313 23.96 1/83 34.31 1/58(1.7%) 5.36 W3 + 4.39 1/456 14.58 1/137 23.40 1/85(1.2%) 5.13 − 4.67 1/428 14.24 1/140 23.71 1/84(1.2%) 5.46 平均值 4.53 1/442 14.41 1/139 23.56 1/85(1.2%) 5.30 W4 + 5.18 1/386 15.11 1/132 30.02 1/67(1.5%) 5.80 − 4.33 1/462 10.00 1/200 29.90 1/67(1.5%) 6.91 平均值 4.76 1/420 12.56 1/159 29.96 1/67(1.5%) 6.30 表 5 试件刚度值
试件
编号开裂刚度Kc/(kN∙mm) 屈服刚度Ky/(kN∙mm) 峰值刚度Kp/(kN∙mm) 极限刚度Ku/(kN∙mm) W1 491.3 98.9 63.1 35.4 W2 532.4 191.2 69.6 41.3 W3 491.4 282.0 115.3 58.9 W4 564.4 311.0 149.1 56.0 表 6 带有不同厚度聚苯板的剪力墙承载力、变形能力及刚度
Table 6. Carrying capacity, deformation capacity and stiffness of shear walls with polystyrene plates of different thickness
聚苯板厚度/mm 屈服点 峰值点 极限点 $ \mu $ Fy/kN Uy/mm Ky/(kN/mm) FP/kN UP/mm Kp/(kN/mm) Fu/kN Uu/mm θu/(%) Ku/(kN/mm) 30 1268.7 5.7 222.6 1652.1 20.1 82.2 1404.2 31.9 1.6 44.0 5.6 50 1155.2 7.3 158.2 1595.5 19.9 80.2 1342.2 38.9 1.9 34.5 5.7 100 1032.1 6.8 151.8 1529.0 20.0 76.5 1213.4 40.0 2 30.3 5.8 150 907.5 6.8 133.5 1246.1 19.5 63.7 924.3 49.9 2.5 18.5 7.3 表 7 峰值承载力模拟结果与计算值比较
Table 7. The comparison between simulation results and calculation results
聚苯板厚度/mm 模拟值/kN 按整墙计算值/kN 模拟值/计算值 30 1652.1 1549.9 1.07 50 1595.5 1549.9 1.03 100 1529.0 1549.9 0.99 150 1246.1 1549.9 0.80 表 8 两侧现浇墙为不同长度时剪力墙承载力、变形能力及刚度
Table 8. Carrying capacity, deformation capacity and stiffness of shear walls with cast-in-place walls of different length
后浇墙长 屈服点 峰值点 极限点 $ \mu $ Fy/kN Uy/mm Ky/(kN/mm) FP/kN UP/mm Kp/(kN/mm) Fu/kN Uu/mm θu/(%) Ku/(kN/mm) 450 mm 433.5 8.2 52.9 628.3 29.9 21.0 516.3 79.6 4.0 6.5 9.7 600 mm 699.6 7.6 92.1 873.9 30.0 29.2 608.0 49.8 2.5 12.2 6.6 900 mm 1155.2 7.3 196.8 1595.5 19.9 82.9 1342.2 38.9 2.0 33.4 5.7 -
[1] 黄远, 胡晓芳, 万雄伟, 等. 水平荷载作用下RC剪力墙有效刚度研究[J]. 湖南大学学报(自然科学版), 2019, 46(7): 11 − 18. doi: 10.16339/j.cnki.hdxbzkb.2019.07.002HUANG Yuan, HU Xiaofang, WAN Xiongwei, et al. Effective stiffness of reinforced concrete shear wall under lateral load [J]. Journal of Hunan University (Natural Sciences), 2019, 46(7): 11 − 18. (in Chinese) doi: 10.16339/j.cnki.hdxbzkb.2019.07.002 [2] 王激扬, 楼文娟, 田中仁史. 开洞形式对混凝土剪力墙抗震性能的影响[J]. 建筑结构学报, 2009, 30(增刊 2): 41 − 46.WANG Jiyang, LOU Wenjuan, TANAKA H. Influence of opening type on seismic behavior of reinforced concrete structural walls [J]. Journal of Building Structures, 2009, 30(Suppl 2): 41 − 46. (in Chinese) [3] MARIUS M. Seismic behaviour of reinforced concrete shear walls with regular and staggered openings after the strong earthquakes between 2009 and 2011 [J]. Engineering Failure Analysis, 2013, 34: 537 − 565. doi: 10.1016/j.engfailanal.2013.05.014 [4] 胡文博, 翟希梅, 姜洪斌. 预制装配式钢筋混凝土一体化剪力墙抗震性能研究及构造方案优化 [J]. 建筑结构学报, 2016, 37(8): 1 − 10.HU Wenbo, ZHAI Ximei, JIANG Hongbin. Study on seismic performance and construction measures optimization of precast fabricated RC integration shear wall [J]. Journal of Building Structures, 2016, 37(8): 1 − 10. (in Chinese) [5] 种迅, 张蓝方, 万金亮, 等. 两层带开洞预制剪力墙抗震性能试验研究与数值模拟分析[J]. 工程力学, 2019, 36(5): 176 − 183. doi: 10.6052/j.issn.1000-4750.2018.01.0083CHONG Xun, ZHANG Lanfang, WAN Jinliang, et al. Experimental study and numerical simulation on seismic performance of two-story precast shear walls with opening [J]. Engineering Mechanics, 2019, 36(5): 176 − 183. (in Chinese) doi: 10.6052/j.issn.1000-4750.2018.01.0083 [6] 初明进, 刘继良, 侯建群, 等. 带竖向接缝的空心模剪力墙受剪性能试验研究及承载力计算[J]. 工程力学, 2020, 37(1): 183 − 194. doi: 10.6052/j.issn.1000-4750.2019.03.0083CHU Mingjin, LIU Jiliang, HOU Jianqun, et al. Experimental study on shear behaviors and bearing capacity of shear walls built with precast concrete two-way hollow slabs with vertical joints [J]. Engineering Mechanics, 2020, 37(1): 183 − 194. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.03.0083 [7] 郭海山, 刘康, 齐虎, 等. 局部填充构造对新型装配整体式混凝土剪力墙结构整体性能影响分析[J]. 施工技术, 2015, 44(3): 25 − 30.GUO Haishan, LIU Kang, QI Hu, et al. Analysis on the performance of new monolithic precast concrete concrete shear wall structure with locally filled conformation [J]. Construction Technology, 2015, 44(3): 25 − 30. (in Chinese) [8] 袁辉, 朱张峰, 董军. 填充墙对装配式混凝土联肢剪力墙抗震性能的影响[J]. 南京工业大学学报(自然科学版), 2018, 40(4): 96 − 101.YUAN Hui, ZHU Zhangfeng, DONG Jun. Effects of infill walls on seismic behavior of precast concrete coupled shear walls [J]. Journal of Nanjing Tech University (Natural Science Edition), 2018, 40(4): 96 − 101. (in Chinese) [9] 庞瑞, 刘晓怡, 张海东, 等. 带PC填充墙的装配式联肢剪力墙抗震性能试验研究[J]. 建筑结构, 2020, 50(20): 77 − 83. doi: 10.19701/j.jzjg.2020.20.013PANG Rui, LIU Xiaoyi, ZHANG Haidong, et al. Seismic behavior test of precast concrete coupled shear wall with PC infill wall [J]. Building Structure, 2020, 50(20): 77 − 83. (in Chinese) doi: 10.19701/j.jzjg.2020.20.013 [10] 张微敬, 闫怡雯, 钱稼茹, 等. 底部放置聚苯板的预制剪力墙抗震性能试验研究[J]. 地震工程与工程振动, 2021, 41(1): 16 − 24. doi: 10.13197/j.eeev.2021.01.16.zhangwj.003ZHANG Weijing, YAN Yiwen, QIAN Jiaru, et al. Experimental study on seismic performance of precast shear wall with polystyrene board at the bottom [J]. Earthquake Engineering and Engineering Dynamics, 2021, 41(1): 16 − 24. (in Chinese) doi: 10.13197/j.eeev.2021.01.16.zhangwj.003 [11] JGJ/T 101−2015, 建筑抗震试验方法规程[S] . 北京: 中国建筑工业出版社, 2015.JGJ/T 101−2015, Code for seismic test methods of buildings [S]. Beijing: China Architecture & Building Press, 2015. (in Chinese) [12] GB 50010−2010, 混凝土结构设计规范[S]. 北京: 中国建筑工业出版社, 2010.GB 50010−2010, Code for design of concrete structures [S]. Beijing: China Architecture & Building Press, 2010. (in Chinese) [13] GB 50011−2010, 建筑抗震设计规范[S]. 北京: 中国建筑工业出版社, 2010.GB 50011−2010, Code for seismic design of buildings [S]. Beijing: China Architecture & Building Press, 2010. (in Chinese) [14] 陈博. PVC泡沫夹芯碳纤维/环氧树脂夹芯板低速冲击数值模拟[D]. 太原: 中北大学, 2016.CHEN Bo. PVC foam sandwich of carbon fiber/epoxy sandwich panel of low velocity impact numerical simulation [D]. Taiyuan: North University of China, 2016. (in Chinese) -