留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

水平接缝设置聚苯板的预制填充墙对剪力墙抗震性能影响研究

张微敬 冷添银 钱稼茹

张微敬, 冷添银, 钱稼茹. 水平接缝设置聚苯板的预制填充墙对剪力墙抗震性能影响研究[J]. 工程力学, 2023, 40(11): 140-154. doi: 10.6052/j.issn.1000-4750.2022.02.0128
引用本文: 张微敬, 冷添银, 钱稼茹. 水平接缝设置聚苯板的预制填充墙对剪力墙抗震性能影响研究[J]. 工程力学, 2023, 40(11): 140-154. doi: 10.6052/j.issn.1000-4750.2022.02.0128
ZHANG Wei-jing, LENG Tian-yin, QIAN Jia-ru. EFFECT OF PRECAST FILLED WALL WITH POLYSTYRENE PLATE HORIZONTAL JOINT ON SEISMIC PERFORMANCE OF SHEAR WALLS[J]. Engineering Mechanics, 2023, 40(11): 140-154. doi: 10.6052/j.issn.1000-4750.2022.02.0128
Citation: ZHANG Wei-jing, LENG Tian-yin, QIAN Jia-ru. EFFECT OF PRECAST FILLED WALL WITH POLYSTYRENE PLATE HORIZONTAL JOINT ON SEISMIC PERFORMANCE OF SHEAR WALLS[J]. Engineering Mechanics, 2023, 40(11): 140-154. doi: 10.6052/j.issn.1000-4750.2022.02.0128

水平接缝设置聚苯板的预制填充墙对剪力墙抗震性能影响研究

doi: 10.6052/j.issn.1000-4750.2022.02.0128
基金项目: 国家自然科学基金项目(52078012)
详细信息
    作者简介:

    冷添银(1995−),男,云南大理人,硕士生,主要从事结构工程研究(E-mail: s201804025@emails.bjut.edu.cn)

    钱稼茹(1946−),男,江苏无锡人,教授,本科,主要从事结构工程研究(E-mail: qianjr@tsinghua.edu.cn)

    通讯作者:

    张微敬(1969−),女,黑龙江哈尔滨人,教授,博士,主要从事结构工程研究(E-mail: zhangweijing@bjut.edu.cn)

  • 中图分类号: TU398+.2

EFFECT OF PRECAST FILLED WALL WITH POLYSTYRENE PLATE HORIZONTAL JOINT ON SEISMIC PERFORMANCE OF SHEAR WALLS

  • 摘要: 为研究水平接缝设置聚苯板的预制填充墙对剪力墙抗震性能影响,完成了4个尺寸相同的剪力墙试件拟静力试验,其中3个试件两侧为现浇剪力墙、中间为水平接缝设置聚苯板的预制填充墙,1个试件为用作对比的整体现浇剪力墙。试验结果表明:4个试件的破坏形态都是整墙正截面受压破坏,但中间为预制填充墙的试件,其两侧现浇墙与预制填充墙结合面开裂、竖向裂缝贯通墙高,中间预制填充墙裂缝明显较少,且现浇墙两端均设置约束边缘构件的试件中间预制填充墙的裂缝更少。试件的极限位移角为1/83~1/50。与现浇剪力墙相比,中间为预制填充墙的剪力墙试件屈服刚度降低了19.4%~61.6%,峰值刚度降低了37.8%~55.6%,表明水平接缝设置聚苯板的预制填充墙可以有效降低刚度。中间为预制填充墙的剪力墙试件的峰值水平力试验值小于现浇剪力墙,其偏心受压承载力仍可按整墙计算,但不计入预制填充墙的竖向分布钢筋。采用有限元分析程序ABAQUS,对试件进行非线性数值模拟及参数分析。结果表明:随着预制填充墙中水平接缝设置的聚苯板厚度增加,水平承载力及刚度降低,变形能力有所提高;随着两侧现浇剪力墙长度减小,水平承载力及刚度降低,变形能力显著提高。
  • 图  1  试件立面图 /mm

    Figure  1.  Elevation of specimens

    图  2  试件配筋图

    Figure  2.  Reinforcement of specimens

    图  3  试件制作过程

    Figure  3.  Manufacturing process of the specimens

    图  4  加载装置图 /mm

    Figure  4.  Test setup

    图  5  试件位移测点布置图 /mm

    Figure  5.  Layout of displacement measuring point

    图  6  试件应变测点布置图

    Figure  6.  Layout of strain measuring point

    图  7  各试件位移角为0.25%时照片

    Figure  7.  Photographs of specimens at 0.25% drift

    图  8  各试件位移角为1%时照片

    Figure  8.  Photographs of specimens at 1% drift

    图  9  试件墙体破坏后照片

    Figure  9.  Photographs of specimens after failure

    图  10  试件滞回曲线

    Figure  10.  Hysteresis curve of specimens

    图  11  试件骨架曲线

    Figure  11.  Skeleton curve of specimens

    图  12  刚度退化曲线

    Figure  12.  Stiffness degradation curves of specimens

    图  13  水平力-钢筋应变曲线

    Figure  13.  Lateral load versus strain curves

    图  14  试件有限元模型

    Figure  14.  Finite element model of specimen

    图  15  滞回曲线及骨架曲线模拟值与试验值对比

    Figure  15.  The hysteresis and skeleton curve obtained from simulation and experiment

    图  16  峰值荷载时模拟混凝土应变、钢筋应力云图

    Figure  16.  Simulation results of strain & stress at peak load stage

    图  17  带有不同厚度聚苯板的剪力墙水平力-位移曲线

    Figure  17.  Lateral load-displacement curves of shear walls with polystyrene plates of different thickness

    图  18  不同长度现浇墙的剪力墙水平力-位移曲线

    Figure  18.  Lateral load-displacement curves of shear walls with cast-in-place walls of different length

    表  1  试件配筋表

    Table  1.   Reinforcement of specimens

    试件
    编号
    纵筋箍筋竖向分
    布筋
    水平分
    布筋
    拉筋
    W1~W461410@1008@15012@2008@600
    下载: 导出CSV

    表  2  钢筋材料力学性能

    Table  2.   Material properties of steel bars

    直径d/mm屈服强度fy/MPa抗拉强度fu/MPa屈服应变εy/(×10−6)
    84366502180
    104536412265
    123956061975
    144506362250
    下载: 导出CSV

    表  3  试件的开裂荷载、屈服荷载、峰值荷载

    试件编号开裂荷载Fc/kN名义屈服荷载Fy/kN峰值荷载Fp/kN剪力墙抗弯承载力
    水平力Fm/kN
    Fp/Fm
    +平均值+平均值+平均值
    W153.854.354.11146.8725.7936.31527.61590.61558.81346.91.16
    W245.781.963.81285.21163.21224.21696.91635.11666.01346.91.24
    W349.858.354.11250.71303.91277.31670.71652.11661.51567.81.06
    W4502.6355.3429.01458.91499.11479.01876.81866.81871.81592.71.17
    下载: 导出CSV

    表  4  试件不同阶段的变形值及延性系数

    试件屈服位移Uy/mm屈服位移角θy峰值位移Up/mm峰值位移角θp极限位移Uu/mm极限位移角θu延性系数μ
    W1+13.501/14830.231/6640.371/50(2.0%)2.99
    5.461/36619.181/10438.881/51(1.9%)7.12
    平均值9.481/21124.711/8139.631/50(2.0%)4.18
    W2+7.071/28328.891/6935.151/57(1.8%)4.97
    5.731/34919.021/10533.471/60(1.7%)5.84
    平均值6.401/31323.961/8334.311/58(1.7%)5.36
    W3+4.391/45614.581/13723.401/85(1.2%)5.13
    4.671/42814.241/14023.711/84(1.2%)5.46
    平均值4.531/44214.411/13923.561/85(1.2%)5.30
    W4+5.181/38615.111/13230.021/67(1.5%)5.80
    4.331/46210.001/20029.901/67(1.5%)6.91
    平均值4.761/42012.561/15929.961/67(1.5%)6.30
    下载: 导出CSV

    表  5  试件刚度值

    试件
    编号
    开裂刚度Kc/(kN∙mm)屈服刚度Ky/(kN∙mm)峰值刚度Kp/(kN∙mm)极限刚度Ku/(kN∙mm)
    W1491.3 98.9 63.135.4
    W2532.4191.2 69.641.3
    W3491.4282.0115.358.9
    W4564.4311.0149.156.0
    下载: 导出CSV

    表  6  带有不同厚度聚苯板的剪力墙承载力、变形能力及刚度

    Table  6.   Carrying capacity, deformation capacity and stiffness of shear walls with polystyrene plates of different thickness

    聚苯板厚度/mm屈服点峰值点极限点$ \mu $
    Fy/kNUy/mmKy/(kN/mm)FP/kNUP/mmKp/(kN/mm)Fu/kNUu/mmθu/(%)Ku/(kN/mm)
    301268.75.7222.61652.120.182.21404.231.91.644.05.6
    501155.27.3158.21595.519.980.21342.238.91.934.55.7
    1001032.16.8151.81529.020.076.51213.440.0230.35.8
    150907.56.8133.51246.119.563.7924.349.92.518.57.3
    下载: 导出CSV

    表  7  峰值承载力模拟结果与计算值比较

    Table  7.   The comparison between simulation results and calculation results

    聚苯板厚度/mm模拟值/kN按整墙计算值/kN模拟值/计算值
    301652.11549.91.07
    501595.51549.91.03
    1001529.01549.90.99
    1501246.11549.90.80
    下载: 导出CSV

    表  8  两侧现浇墙为不同长度时剪力墙承载力、变形能力及刚度

    Table  8.   Carrying capacity, deformation capacity and stiffness of shear walls with cast-in-place walls of different length

    后浇墙长屈服点峰值点极限点$ \mu $
    Fy/kNUy/mmKy/(kN/mm)FP/kNUP/mmKp/(kN/mm)Fu/kNUu/mmθu/(%)Ku/(kN/mm)
    450 mm433.58.252.9628.329.921.0516.379.64.06.59.7
    600 mm699.67.692.1873.930.029.2608.049.82.512.26.6
    900 mm1155.27.3196.81595.519.982.91342.238.92.033.45.7
    下载: 导出CSV
  • [1] 黄远, 胡晓芳, 万雄伟, 等. 水平荷载作用下RC剪力墙有效刚度研究[J]. 湖南大学学报(自然科学版), 2019, 46(7): 11 − 18. doi: 10.16339/j.cnki.hdxbzkb.2019.07.002

    HUANG Yuan, HU Xiaofang, WAN Xiongwei, et al. Effective stiffness of reinforced concrete shear wall under lateral load [J]. Journal of Hunan University (Natural Sciences), 2019, 46(7): 11 − 18. (in Chinese) doi: 10.16339/j.cnki.hdxbzkb.2019.07.002
    [2] 王激扬, 楼文娟, 田中仁史. 开洞形式对混凝土剪力墙抗震性能的影响[J]. 建筑结构学报, 2009, 30(增刊 2): 41 − 46.

    WANG Jiyang, LOU Wenjuan, TANAKA H. Influence of opening type on seismic behavior of reinforced concrete structural walls [J]. Journal of Building Structures, 2009, 30(Suppl 2): 41 − 46. (in Chinese)
    [3] MARIUS M. Seismic behaviour of reinforced concrete shear walls with regular and staggered openings after the strong earthquakes between 2009 and 2011 [J]. Engineering Failure Analysis, 2013, 34: 537 − 565. doi: 10.1016/j.engfailanal.2013.05.014
    [4] 胡文博, 翟希梅, 姜洪斌. 预制装配式钢筋混凝土一体化剪力墙抗震性能研究及构造方案优化 [J]. 建筑结构学报, 2016, 37(8): 1 − 10.

    HU Wenbo, ZHAI Ximei, JIANG Hongbin. Study on seismic performance and construction measures optimization of precast fabricated RC integration shear wall [J]. Journal of Building Structures, 2016, 37(8): 1 − 10. (in Chinese)
    [5] 种迅, 张蓝方, 万金亮, 等. 两层带开洞预制剪力墙抗震性能试验研究与数值模拟分析[J]. 工程力学, 2019, 36(5): 176 − 183. doi: 10.6052/j.issn.1000-4750.2018.01.0083

    CHONG Xun, ZHANG Lanfang, WAN Jinliang, et al. Experimental study and numerical simulation on seismic performance of two-story precast shear walls with opening [J]. Engineering Mechanics, 2019, 36(5): 176 − 183. (in Chinese) doi: 10.6052/j.issn.1000-4750.2018.01.0083
    [6] 初明进, 刘继良, 侯建群, 等. 带竖向接缝的空心模剪力墙受剪性能试验研究及承载力计算[J]. 工程力学, 2020, 37(1): 183 − 194. doi: 10.6052/j.issn.1000-4750.2019.03.0083

    CHU Mingjin, LIU Jiliang, HOU Jianqun, et al. Experimental study on shear behaviors and bearing capacity of shear walls built with precast concrete two-way hollow slabs with vertical joints [J]. Engineering Mechanics, 2020, 37(1): 183 − 194. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.03.0083
    [7] 郭海山, 刘康, 齐虎, 等. 局部填充构造对新型装配整体式混凝土剪力墙结构整体性能影响分析[J]. 施工技术, 2015, 44(3): 25 − 30.

    GUO Haishan, LIU Kang, QI Hu, et al. Analysis on the performance of new monolithic precast concrete concrete shear wall structure with locally filled conformation [J]. Construction Technology, 2015, 44(3): 25 − 30. (in Chinese)
    [8] 袁辉, 朱张峰, 董军. 填充墙对装配式混凝土联肢剪力墙抗震性能的影响[J]. 南京工业大学学报(自然科学版), 2018, 40(4): 96 − 101.

    YUAN Hui, ZHU Zhangfeng, DONG Jun. Effects of infill walls on seismic behavior of precast concrete coupled shear walls [J]. Journal of Nanjing Tech University (Natural Science Edition), 2018, 40(4): 96 − 101. (in Chinese)
    [9] 庞瑞, 刘晓怡, 张海东, 等. 带PC填充墙的装配式联肢剪力墙抗震性能试验研究[J]. 建筑结构, 2020, 50(20): 77 − 83. doi: 10.19701/j.jzjg.2020.20.013

    PANG Rui, LIU Xiaoyi, ZHANG Haidong, et al. Seismic behavior test of precast concrete coupled shear wall with PC infill wall [J]. Building Structure, 2020, 50(20): 77 − 83. (in Chinese) doi: 10.19701/j.jzjg.2020.20.013
    [10] 张微敬, 闫怡雯, 钱稼茹, 等. 底部放置聚苯板的预制剪力墙抗震性能试验研究[J]. 地震工程与工程振动, 2021, 41(1): 16 − 24. doi: 10.13197/j.eeev.2021.01.16.zhangwj.003

    ZHANG Weijing, YAN Yiwen, QIAN Jiaru, et al. Experimental study on seismic performance of precast shear wall with polystyrene board at the bottom [J]. Earthquake Engineering and Engineering Dynamics, 2021, 41(1): 16 − 24. (in Chinese) doi: 10.13197/j.eeev.2021.01.16.zhangwj.003
    [11] JGJ/T 101−2015, 建筑抗震试验方法规程[S] . 北京: 中国建筑工业出版社, 2015.

    JGJ/T 101−2015, Code for seismic test methods of buildings [S]. Beijing: China Architecture & Building Press, 2015. (in Chinese)
    [12] GB 50010−2010, 混凝土结构设计规范[S]. 北京: 中国建筑工业出版社, 2010.

    GB 50010−2010, Code for design of concrete structures [S]. Beijing: China Architecture & Building Press, 2010. (in Chinese)
    [13] GB 50011−2010, 建筑抗震设计规范[S]. 北京: 中国建筑工业出版社, 2010.

    GB 50011−2010, Code for seismic design of buildings [S]. Beijing: China Architecture & Building Press, 2010. (in Chinese)
    [14] 陈博. PVC泡沫夹芯碳纤维/环氧树脂夹芯板低速冲击数值模拟[D]. 太原: 中北大学, 2016.

    CHEN Bo. PVC foam sandwich of carbon fiber/epoxy sandwich panel of low velocity impact numerical simulation [D]. Taiyuan: North University of China, 2016. (in Chinese)
  • 加载中
图(19) / 表(8)
计量
  • 文章访问数:  140
  • HTML全文浏览量:  55
  • PDF下载量:  29
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-03
  • 修回日期:  2022-07-14
  • 录用日期:  2022-08-05
  • 网络出版日期:  2022-08-05
  • 刊出日期:  2023-11-25

目录

    /

    返回文章
    返回