EXPERIMENTAL STUDY ON SEISMIC PERFORMANCE OF STEEL-REINFORCED CONCRETE COLUMNS UNDER COMPRESSION-FLEXURE-SHEAR-TORSION COMBINED ACTIONS
-
摘要: 为研究型钢混凝土(SRC)柱在压弯剪扭复合受力状态下的抗震性能,以截面尺寸、型钢含钢率、纵筋配筋率、体积配箍率和栓钉位置为变化参数,完成了12根型钢混凝土柱和1根钢筋混凝土(RC)对比柱的压弯剪扭低周反复试验。观察了试件在复合受扭状态下的破坏形态,对比分析了各试件的滞回曲线、骨架曲线、刚度退化、耗能及延性性能。结果表明:在压弯剪扭受力状态下,所有试件均发生弯扭破坏;荷载-柱顶位移滞回曲线呈饱满的梭形,扭矩-扭转角曲线为捏拢的“S”形;增大截面尺寸和配筋率可有效提高SRC柱的抗扭和抗弯承载力;峰值荷载前,抗扭刚度的退化速率明显快于抗弯刚度的退化速率,增大型钢含钢率和配筋率可延缓SRC柱的刚度退化;SRC柱的抗弯耗能能力优于抗扭耗能能力,扭转延性大于弯曲延性;与方形截面相比,矩形截面具有更好的扭转变形能力;在工字钢翼缘上焊接栓钉可有效提高SRC柱的抗震性能;根据现行规范和试验数据,提出SRC柱构造设计的相关建议和扭转耗能退化的经验公式。Abstract: In order to reveal the seismic behavior of steel-reinforced concrete (SRC) columns under compression-flexure-shear-torsion combined actions, twelve SRC columns and one reinforced concrete(RC) column were tested by comprehensively considering the cross-sectional dimension of the column, the steel ratio, the reinforcement ratio, the stirrup ratio and, the welded stud location. The failure characteristics of specimens under composite torsional conditions were observed, and the influence of different parameters on the seismic indexes of SRC columns were analyzed, such as hysteric curve, stiffness degradation, energy dissipation and ductility. The test results indicate that the failure patterns of specimens mainly appear as the bending-torsion composite failure occurs. The load - displacement hysteric curves present full spindle shapes, and the torque-torsion angle curves are in “S” shapes with obvious pinching. The torsional and flexural bearing capacity of SRC columns can be effectively improved by increasing the section size or reinforcing ratio. Before the peak load, the degradation rate of torsional stiffness is significantly faster than that of flexural stiffness and, increasing the steel ratio and reinforcement ratio can delay the degradation of SRC column stiffness. The bending energy dissipation capacity of SRC columns is better than the torsional energy dissipation capacity, and the torsional ductility is greater than the bending ductility. SRC columns with rectangular cross-sections have better torsional deformation capacity than those with square cross-sections. Welding studs on I - shaped steel flanges can effectively improve the seismic behavior of SRC columns. According to the current seismic code and test data, some suggestions of structural measures of SRC columns and empirical formula of torsional energy degradation are put forward.
-
表 1 试件设计参数
Table 1. Design parameters of specimens
试件编号 轴压比n 扭弯比γ b×h/mm 工字钢 纵筋 箍筋 含钢率ρss/(%) 配筋率ρs/(%) 配箍率ρv/(%) 栓钉位置 RC-1 0.3 0.21 300×300 − 8 14 8@100− 1.37 0.84 无 SRC-1 0.3 0.21 300×300 I16 8 14 8@1002.90 1.37 0.84 无 SRC-2 0.3 0.21 250×250 I14 8 14 8@1003.44 1.97 1.06 无 SRC-3 0.3 0.21 300×250 I16 8 14 8@1003.48 1.64 0.95 无 SRC-4 0.3 0.21 300×300 I14 8 14 8@1002.39 1.37 0.84 无 SRC-5 0.3 0.21 300×300 I18 8 14 8@1003.42 1.37 0.84 无 SRC-6 0.3 0.21 300×300 I16 8 12 8@1002.90 1.00 0.84 无 SRC-7 0.3 0.21 300×300 I16 8 18 8@1002.90 2.26 0.84 无 SRC-8 0.3 0.21 300×300 I16 8 20 8@1002.90 2.79 0.84 无 SRC-9 0.3 0.21 300×300 I16 8 14 8@502.90 1.37 1.35 无 SRC-10 0.3 0.21 300×300 I16 8 14 8@1502.90 1.37 0.56 无 SRC-11 0.3 0.21 300×300 I16 8 14 8@1003.18 1.37 0.84 翼缘 SRC-12 0.3 0.21 300×300 I16 8 14 8@1003.52 1.37 0.84 翼缘和腹板 表 2 钢材力学性能测试结果
Table 2. Mechanical performance indices of steel
钢材类型 屈服强度fy
/MPa极限强度fu
/MPa弹性模量Es
/(×105 MPa)I18 273.89 381.40 2.03 I16 318.04 443.32 2.06 I14 326.59 438.57 2.02 8335.41 490.20 2.03 12435.50 626.70 1.98 14482.26 641.68 1.96 18443.30 652.81 1.98 20397.35 592.17 1.98 表 3 试件的特征点参数
Table 3. character parameters of specimens
试件编号 屈服点 峰值点 破坏点 延性 Py/kN Δy/mm Ty/(kN·m) θy/(°) Pu/kN Δu/mm Tu/(kN·m) θu/(°) Pf/kN Δf/mm Tf/(kN·m) θf/(°) μ∆ μθ RC-1 正向 130.8 9.1 34.7 0.11 161.8 13.1 41.9 0.17 137.6 16.0 35.6 0.31 1.76 2.82 反向 116.4 9.4 30.3 0.17 156.7 13.1 36.3 0.27 133.2 18.3 30.9 0.35 1.95 2.06 均值 123.6 9.3 32.5 0.14 159.3 13.1 39.1 0.22 135.4 17.2 33.3 0.33 1.85 2.36 SRC-1 正向 151.2 8.5 33.7 0.12 176.6 17.5 40.7 0.26 150.1 23.3 34.6 0.42 2.74 3.50 反向 175.7 9.3 39.0 0.17 206.2 18.4 43.5 0.48 175.3 29.5 37.0 0.51 3.17 3.00 均值 163.5 8.9 36.3 0.15 191.4 18.0 42.1 0.37 162.7 26.4 35.8 0.47 2.96 3.25 SRC-2 正向 93.7 8.5 14.2 0.09 109.8 13.1 16.6 0.26 93.3 22.1 14.1 0.35 2.60 3.89 反向 135.8 8.9 23.2 0.20 158.4 12.2 28.4 0.39 142.6 25.5 24.2 0.40 2.86 2.00 均值 114.8 8.7 18.7 0.15 134.1 12.6 22.5 0.33 118.0 23.8 19.1 0.38 2.73 2.95 SRC-3 正向 145.0 7.5 26.2 0.08 171.7 13.0 29.4 0.17 146.0 22.1 26.8 0.52 2.95 6.50 反向 149.6 9.5 24.6 0.11 181.0 17.4 28.3 0.26 153.8 24.2 24.9 0.52 2.55 4.73 均值 147.3 8.5 25.4 0.10 176.4 15.2 28.8 0.22 149.9 23.2 25.8 0.52 2.75 5.62 SRC-4 正向 161.8 6.9 33.1 0.09 196.1 13.1 38.1 0.16 166.7 22.6 32.4 0.44 3.28 4.89 反向 162.7 7.3 33.2 0.10 186.7 17.4 38.0 0.17 158.7 24.4 32.3 0.35 3.34 3.50 均值 162.3 7.1 33.1 0.10 191.4 15.2 38.0 0.17 162.7 23.5 32.3 0.40 3.31 4.20 SRC-5 正向 137.6 7.7 32.3 0.09 166.4 13.1 35.9 0.34 141.4 27.5 30.5 0.47 3.58 5.22 反向 168.1 10.8 34.9 0.14 202.1 21.9 39.2 0.34 182.5 29.7 33.3 0.47 2.75 3.36 均值 152.9 9.3 33.6 0.12 184.3 17.5 37.5 0.34 162.0 28.6 31.9 0.47 3.17 4.29 SRC-6 正向 154.4 7.4 27.9 0.10 185.1 13.1 33.9 0.26 157.4 21.2 28.8 0.52 2.86 5.20 反向 170.3 8.1 31.3 0.08 206.2 13.0 33.8 0.30 175.3 21.4 28.7 0.33 2.64 4.13 均值 162.4 7.8 29.6 0.09 195.7 13.1 33.8 0.28 166.4 21.3 28.8 0.43 2.75 4.67 SRC-7 正向 167.2 9.3 23.2 0.10 206.2 18.0 27.9 0.26 175.6 27.7 23.7 0.30 2.98 3.00 反向 184.3 10.4 24.6 0.07 220.9 17.8 27.4 0.11 190.6 27.9 23.3 0.28 2.69 4.00 均值 175.8 9.9 23.9 0.09 213.6 17.9 27.6 0.19 183.1 27.8 23.5 0.29 2.84 3.50 SRC-8 正向 199.1 8.3 38.5 0.15 233.3 17.3 48.0 0.28 198.3 29.2 40.8 0.44 3.51 2.93 反向 177.9 8.4 30.0 0.10 212.3 17.3 31.4 0.13 180.4 24.3 26.7 0.42 2.89 4.20 均值 188.5 8.4 34.2 0.13 222.8 17.3 39.7 0.21 189.4 26.7 33.8 0.43 3.20 3.57 SRC-9 正向 140.1 7.1 25.1 0.09 168.5 13.0 30.2 0.17 143.2 24.4 25.7 0.40 3.44 4.44 反向 171.2 9.9 27.4 0.09 211.7 25.6 30.7 0.17 180.0 32.9 26.2 0.69 3.33 7.67 均值 155.7 8.5 26.2 0.09 190.1 19.3 30.5 0.17 161.6 28.7 25.9 0.55 3.39 6.06 SRC-10 正向 138.3 8.6 33.4 0.08 164.8 17.2 37.4 0.26 140.1 22.7 31.8 0.46 2.64 5.75 反向 171.9 8.9 30.9 0.11 207.2 17.0 33.2 0.25 176.1 22.7 28.2 0.37 2.55 3.36 均值 155.1 8.8 32.2 0.10 186.0 17.1 35.3 0.26 158.1 22.7 30.0 0.42 2.60 4.56 SRC-11 正向 170.0 7.30 36.5 0.09 197.5 17.0 41.8 0.18 167.5 28.1 35.5 0.49 3.85 5.44 反向 160.8 7.90 35.0 0.13 186.7 14.4 39.9 0.34 158.3 23.1 33.9 0.59 2.92 4.54 均值 165.4 7.60 35.8 0.11 192.1 15.7 40.9 0.26 162.9 25.6 34.7 0.54 3.39 4.99 SRC-12 正向 147.5 7.70 27.6 0.15 178.3 13.0 33.6 0.35 151.7 23.1 28.6 0.57 3.00 3.80 反向 173.3 9.10 34.0 0.12 207.5 17.1 37.9 0.26 175.8 29.2 32.3 0.61 3.21 5.08 均值 160.4 8.40 30.8 0.14 192.9 15.1 35.8 0.31 163.8 26.1 30.5 0.59 3.10 4.44 表 4 试件的层间位移角
Table 4. The interlayer displacement angle of the specimens
试件编号 Δcr/He Δy/He Δu/He Δf/He RC-1 1/885 1/130 1/92 1/70 SRC-1 1/923 1/134 1/67 1/45 SRC-2 1/820 1/118 1/81 1/43 SRC-3 1/923 1/141 1/79 1/52 SRC-4 1/632 1/169 1/79 1/51 SRC-5 1/1043 1/130 1/69 1/42 SRC-6 1/1412 1/155 1/92 1/56 SRC-7 1/1200 1/122 1/67 1/43 SRC-8 1/960 1/144 1/69 1/45 SRC-9 1/857 1/142 1/62 1/42 SRC-10 1/727 1/137 1/70 1/53 SRC-11 1/1500 1/158 1/76 1/47 SRC-12 1/1091 1/143 1/80 1/46 -
[1] 曹万林, 武海鹏, 周建龙. 钢-混凝土组合巨型框架柱抗震研究进展[J]. 哈尔滨工业大学学报, 2019, 51(12): 1 − 12. doi: 10.11918/j.issn.0367-6234.201906155CAO Wanglin, WU Haipeng, ZHOU Jianlong. Review on seismic technology progress of steel-concrete composite mega frame column [J]. Journal of Harbin Institute of Technology, 2019, 51(12): 1 − 12. (in Chinese) doi: 10.11918/j.issn.0367-6234.201906155 [2] 刘祖强, 任甭优, 薛建阳, 等. 型钢混凝土异形柱框架地震损伤分析[J]. 工程力学, 2021, 38(1): 143 − 153. doi: 10.6052/j.issn.1000-4750.2020.02.0123LIU Zuqiang, REN Bengyou, XUE Jianyang, et al. Seismic damage analysis on steel reinforced concrete frames with special-shaped columns [J]. Engineering Mechanics, 2021, 38(1): 143 − 153. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.02.0123 [3] 刘祖强, 陈炜灿, 毛冬旭, 等. 型钢混凝土异形柱框架空间受力性能分析[J]. 工程力学, 2021, 38(7): 120 − 132, 158. doi: 10.6052/j.issn.1000-4750.2020.07.0488LIU Zuqiang, CHEN Weichan, MAO Dongxu, et al. Spatial mechanical performance of steel reinforced concrete frames with special-shaped columns [J]. Engineering Mechanics, 2021, 38(7): 120 − 132, 158. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.07.0488 [4] YANG Y, XUE Y, YU Y, et al. Experimental study on seismic performance of partially precast steel reinforced concrete columns [J]. Engineering Structures, 2018, 175: 63 − 75. doi: 10.1016/j.engstruct.2018.08.027 [5] ZHOU J, CHEN Z, ZHENG W, et al. Seismic behavior of steel reinforced concrete column with welded studs subjected to combined action of compression-bending-shear-torsion [J]. Engineering Structures, 2022, 252: 113727. doi: 10.1016/j.engstruct.2021.113727 [6] 袁书强, 陈适才, 田岳, 等. 扭弯比对SRC柱抗震性能影响的试验研究与分析[J]. 工程力学, 2018, 35(3): 167 − 177. doi: 10.6052/j.issn.1000-4750.2016.11.0908YUAN Shuqiang, CHEN Shicai, TIAN Yue, et al. Experimental study and analysis of torsion-bending ratio effect on aseismic performance of SRC columns [J]. Engineering Mechanics, 2018, 35(3): 167 − 177. (in Chinese) doi: 10.6052/j.issn.1000-4750.2016.11.0908 [7] YB 9082−2006, 钢骨混凝土结构技术规程 [S]. 北京: 冶金工业出版社, 2007.YB 9082−2006, Technical specification of steel-reinforced concrete structures [S]. Beijing: Metallurgical Industry Press, 2007. (in Chinese) [8] JGJ 138−2016, 组合结构设计规范 [S]. 北京: 中国建筑工业出版社, 2016.JGJ 138−2016, Code for design of composite structures [S]. Beijing: China Architecture & Building Press, 2016. (in Chinese) [9] WANG Y, GUO Y, LIU J, et al. Experimental study on torsion behavior of concrete filled steel tube columns subjected to eccentric compression [J]. Journal of Constructional Steel Research, 2017, 129(FEB.): 119 − 128. [10] NIE X, WANG Y, LI S, et al. Coupled bending-shear-torsion bearing capacity of concrete filled steel tube short columns [J]. Thin-Walled Structures, 2018, 123: 305 − 316. doi: 10.1016/j.tws.2017.11.026 [11] WANG Y, WANG Y, HOU C, et al. Combined compression-bending-torsion behaviour of CFST columns confined by CFRP for marine structures [J]. Composite Structures, 2020, 242: 112181. doi: 10.1016/j.compstruct.2020.112181 [12] CHEN S, PENG W, YAN W. Experimental study on steel reinforced concrete columns subjected to combined bending–torsion cyclic loading [J]. The Structural Design of Tall and Special Buildings, 2018, 27(11): e1479. [13] ZHOU J, CHEN Z, CHEN Y, et al. Torsional behavior of steel reinforced concrete beam with welded studs: Experimental investigation [J]. Journal of Building Engineering, 2022(48): 103879. [14] CHEN Z, MO L, LI S, et al. Seismic behavior of steel reinforced concrete L-shaped columns under compression-bending-shear-torsion combined action [J]. Journal of Building Engineering, 2021, 42: 102498. doi: 10.1016/j.jobe.2021.102498 [15] 陈宗平, 刘祥, 陈建佳. 型钢混凝土十字形柱复合受扭滞回性能试验研究[J]. 建筑结构学报, 2020, 41(6): 108 − 118.CHEN Zongping, LIU Xiang, CHEN Jianjia. Experimental study on hysteretic behavior of steel reinforced concrete cross-shaped column under combined action of compression-flexure-shear and torsion [J]. Journal of Building Structures, 2020, 41(6): 108 − 118. (in Chinese) [16] 靳绪耀, 邵永健, 杜亮, 等. 复合受扭型钢混凝土组合柱滞回性能试验研究[J]. 工业建筑, 2019, 49(7): 169 − 175.JIN Xuyao, SHAO Yongjian, DU Liang, et al. Experimental research on hysteretic behavior of steel reinforced concrete column under combined torsion [J]. Industrial Construction, 2019, 49(7): 169 − 175. (in Chinese) [17] 翁晓红, 邵永健, 劳裕华, 等. 复合受扭型钢混凝土柱抗震性能试验研究[J]. 建筑结构学报, 2017, 38(11): 23 − 33.WEN Xiaohong, SHAO Yongjian, LAO Yuhua, et al. Experimental study on seismic behavior of steel reinforced concrete column under combined torsion [J]. Journal of Building Structures, 2017, 38(11): 23 − 33. (in Chinese) [18] 邵永健, 王妮, 陈宗平, 等. 配角钢骨架型钢混凝土梁的纯扭性能及强度计算方法研究[J]. 工程力学, 2013, 30(9): 103 − 110. doi: 10.6052/j.issn.1000-4750.2012.05.0311SHAO Yongjian, WANG Ni, CHEN Zongping, et al. Torsional behavior and strength calculation methods of angle steel reinforced concrete beams [J]. Engineering Mechanics, 2013, 30(9): 103 − 110. (in Chinese) doi: 10.6052/j.issn.1000-4750.2012.05.0311 [19] 陈宇良. 复合受扭型钢混凝土柱受力性能及设计方法研究 [D]. 南宁: 广西大学, 2018.CHEN Yuliang. Mechanical properties and design methods of steel concrete columns under combined torsion [D]. Nanning: Guangxi University, 2018. (in Chinese) [20] CAO X, WU L, LI Z. Behaviour of steel-reinforced concrete columns under combined torsion based on ABAQUS FEA [J]. Engineering Structures, 2020, 209: 109980. doi: 10.1016/j.engstruct.2019.109980 [21] IBRAHIM M S, GEBREYOUHANNES E, MUHDIN A, et al. Effect of concrete cover on the pure torsional behavior of reinforced concrete beams [J]. Engineering Structures, 2020, 216: 110790. doi: 10.1016/j.engstruct.2020.110790 [22] GB 50011−2010, 建筑抗震设计规范 [S]. 北京: 中国建筑工业出版社, 2016.GB 50011−2010, Code for seismic design of buildings [S]. Beijing: China Architecture & Building Press, 2016. (in Chinese) -