留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

承压型组合剪力键剪切性能试验与承载力计算

马亚飞 周彪 王磊 张建仁

马亚飞, 周彪, 王磊, 张建仁. 承压型组合剪力键剪切性能试验与承载力计算[J]. 工程力学, 2023, 40(11): 120-129. doi: 10.6052/j.issn.1000-4750.2022.01.0117
引用本文: 马亚飞, 周彪, 王磊, 张建仁. 承压型组合剪力键剪切性能试验与承载力计算[J]. 工程力学, 2023, 40(11): 120-129. doi: 10.6052/j.issn.1000-4750.2022.01.0117
MA Ya-fei, ZHOU Biao, WANG Lei, ZHANG Jian-ren. SHEAR PERFORMANCE TEST AND BEARING CAPACITY CALCULATION OF COMPRESSIVE COMPOSITE SHEAR CONNECTOR[J]. Engineering Mechanics, 2023, 40(11): 120-129. doi: 10.6052/j.issn.1000-4750.2022.01.0117
Citation: MA Ya-fei, ZHOU Biao, WANG Lei, ZHANG Jian-ren. SHEAR PERFORMANCE TEST AND BEARING CAPACITY CALCULATION OF COMPRESSIVE COMPOSITE SHEAR CONNECTOR[J]. Engineering Mechanics, 2023, 40(11): 120-129. doi: 10.6052/j.issn.1000-4750.2022.01.0117

承压型组合剪力键剪切性能试验与承载力计算

doi: 10.6052/j.issn.1000-4750.2022.01.0117
基金项目: 国家重点研发计划项目(2021YFB2600900);湖南省自然科学基金创新研究群体项目(2020JJ10060)
详细信息
    作者简介:

    周 彪(1995−),男,江苏人,硕士生,主要从事钢-混凝土研究(E-mail: 2775441078@qq.com)

    王 磊(1979−),男,吉林人,教授,博士,博导,主要从事混凝土桥梁病害诊治研究(E-mail: leiwang@csust.edu.cn)

    张建仁(1958−),男,湖南人,教授,博士,博导,主要从事桥梁全寿命期安全保障研究(E-mail: jianrenz@hotmail.com)

    通讯作者:

    马亚飞(1984−),男,河北人,教授,博士,博导,主要从事桥梁可靠性及耐久性研究(E-mail: yafei.ma@csust.edu.cn)

  • 中图分类号: TU398

SHEAR PERFORMANCE TEST AND BEARING CAPACITY CALCULATION OF COMPRESSIVE COMPOSITE SHEAR CONNECTOR

  • 摘要: 针对抗剪需求较大的钢-混凝土组合结构,改进了一种带横向焊钉的承压型组合剪力键。设计并开展了10个承压型组合剪力键和1个非承压型组合剪力键单调推出试验,明确了混凝土端部承压、混凝土强度、肋板厚度、肋板孔径和焊钉直径对承压型组合剪力键失效模式和破坏过程的影响。建立了承压型组合剪力键有限元模型,在结合试验验证仿真模型可靠性的基础上,进一步揭示了承压型组合剪力键受力机理。以试验变量为基础,建立并分析了108个承压型组合剪力键有限元模型,推导了承压型组合剪力键极限承载力与各参数变量之间的线性关系,对极限承载力分析结果进行多元线性回归提出了承压型组合剪力键极限承载力计算模型。结果表明:承压型组合剪力键混凝土板失效模式为大面积竖向裂缝和端部裂缝,内表面形成由焊钉高度附近向下延伸的斜主裂缝,非承压型组合剪力键混凝土板无明显端部裂缝,承压型组合剪力键极限承载力约为非承压型组合剪力键的1.4倍;与肋板孔径和焊钉直径相比,承压型组合剪力键极限承载力对混凝土强度和肋板厚度更为敏感。该研究提出的承压型组合剪力键极限承载力计算公式物理意义明确,计算值与仿真和试验结果吻合较好,可为组合剪力键设计和工程应用提供参考。
  • 图  1  推出试件设计 /mm

    Figure  1.  Layout of push-out specimens

    图  2  加载装置

    Figure  2.  Load setup

    图  3  承压型组合剪力键混凝土板破坏形态

    Figure  3.  Failure mode of concrete slab of compressive composite shear connector

    图  4  非承压型组合剪力键混凝土板破坏形态

    Figure  4.  Failure mode of concrete slab of non-compressive composite shear connector

    图  5  组合剪力键内部破坏形态

    Figure  5.  Internal failure modes of combined connectors

    图  6  端部承压影响

    Figure  6.  Influence of end pressure

    图  7  混凝土强度影响

    Figure  7.  Influence of concrete strength

    图  8  肋板厚度影响

    Figure  8.  Influence of rib plate thickness

    图  9  肋板孔径影响

    Figure  9.  Influence of rib plate aperture

    图  10  焊钉直径影响

    Figure  10.  Influence of stud diameter

    图  11  有限元模型

    Figure  11.  Finite element model

    图  12  钢材本构模型

    Figure  12.  Constitutive model of steel

    图  13  不同构件网格划分

    Figure  13.  Meshing of different components

    图  14  破坏形态对比

    Figure  14.  Comparison of failure modes

    图  15  荷载-滑移曲线对比

    Figure  15.  Load-slip curve comparison

    图  16  组合剪力键剪切机理分析模型

    Figure  16.  Shear mechanism analysis model of combined connector

    图  17  组合剪力键受力过程分析

    Figure  17.  Analysis on loading process of combined connector

    图  18  有限元参数分析结果

    Figure  18.  Results of FEM parametric analysis

    图  19  极限承载力对比

    Figure  19.  Comparison of ultimate carrying capacity

    表  1  试件设计参数

    Table  1.   Parameter design of specimens

    试件编号混凝土强度fcu/MPa肋板厚度t/mm焊钉直径d/mm开孔孔径D/mm试验极限承载力Pu/kN
    C30-50-19-0030121950740
    C30-50-19-12301219501046
    C40-50-19-12401219501283
    C50-50-19-12501219501441
    C50-30-19-12501219301286
    C50-40-19-12501219401390
    C50-60-19-12501219601580
    C30-50-16-1230121650991
    C30-50-22-12301222501092
    C40-50-19-084081950990
    C40-50-19-16401619501489
    下载: 导出CSV

    表  2  混凝土材料参数取值表

    Table  2.   Value table of concrete material parameters

    标号Ec/GPafc/MPaft/MPakwc/mm
    C3030.024.02.563.1250.259
    C4032.532.03.002.5390.233
    C5034.541.53.402.0780.216
    下载: 导出CSV

    表  3  推出试件参数设计

    Table  3.   Parameter design of push-out specimens

    混凝土强度fcu/MPa肋板厚度t/mm焊钉直径d/mm开孔孔径D/mm
    30 8 16 30
    40 12 19 40
    50 16 22 50
    60
    下载: 导出CSV
  • [1] 丁发兴, 王恩, 吕飞, 等. 考虑组合作用的钢-混凝土组合梁抗剪承载力[J]. 工程力学, 2021, 38(7): 86 − 98. doi: 10.6052/j.issn.1000-4750.2020.07.0479

    DING Faxing, WANG En, LYU Fei, et al. Composite action of steel-concrete composite beams under lateral shear force [J]. Engineering Mechanics, 2021, 38(7): 86 − 98. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.07.0479
    [2] 张建东, 顾建成, 邓文琴, 等. 装配式组合梁桥开孔PBL剪力键抗剪性能[J]. 中国公路学报, 2018, 31(12): 71 − 80. doi: 10.3969/j.issn.1001-7372.2018.12.006

    ZHANG Jiandong, GU Jiancheng, DENG Wenqin, et al. Shear behavior of perfobond rib shear connectors for pre-fabricated composite bridges [J]. China Journal of Highway and Transport, 2018, 31(12): 71 − 80. (in Chinese) doi: 10.3969/j.issn.1001-7372.2018.12.006
    [3] VIANNA J C, COSTA-NEVES L F, VELLASCO P, et al. Structural behaviour of T-Perfobond shear connectors in composite girders: An experimental approach [J]. Engineering Structures, 2008, 30(9): 2381 − 2391. doi: 10.1016/j.engstruct.2008.01.015
    [4] 武芳文, 冯彦鹏, 戴君, 等. 钢-UHPC组合结构中栓钉剪力键力学性能研究[J]. 工程力学, 2022, 39(2): 222 − 234, 243. doi: 10.6052/j.issn.1000-4750.2021.05.0389

    WU Fangwen, FENG Yanpeng, DAI Jun, et al. Study on mechanical properties of stud shear connectors in steel-UHPC composite structures [J]. Engineering Mechanics, 2022, 39(2): 222 − 234, 243. (in Chinese) doi: 10.6052/j.issn.1000-4750.2021.05.0389
    [5] 张建东, 毛泽亮, 叶遇春, 等. 锈蚀后间断式开孔钢板连接件的抗剪性能[J]. 南京工业大学学报(自然科学版), 2020, 42(5): 600 − 607.

    ZHANG Jiandong, MAO Zeliang, YE Yuchun, et al. Shear resistance of corroded discontinuous perfobond rib connection [J]. Journal of Nanjing Tech University (Natural Science Edition), 2020, 42(5): 600 − 607. (in Chinese)
    [6] 赵根田, 侯智译, 高鹏, 等. 拟静力作用下群钉连接件抗剪性能研究[J]. 工程力学, 2020, 37(7): 201 − 213. doi: 10.6052/j.issn.1000-4750.2019.09.0513

    ZHAO Gentian, HOU Zhiyi, GAO Peng, et al. Study on shear performance of group stud connector under the quasi-static load [J]. Engineering Mechanics, 2020, 37(7): 201 − 213. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.09.0513
    [7] SHI Q X, YANG F Z, GUO J R. Study on bearing capacity influence factors of the PBL shear connector [J]. IOP Conference Series: Earth and Environmental Science, 2020, 560(1): 012038. doi: 10.1088/1755-1315/560/1/012038
    [8] WANG J Q, QI J N, TONG T, et al. Static behavior of large stud shear connectors in steel-UHPC composite structures [J]. Engineering Structures, 2019, 178: 534 − 542. doi: 10.1016/j.engstruct.2018.07.058
    [9] 赵晨, 刘玉擎. 开孔板连接件抗剪承载力试验研究[J]. 工程力学, 2012, 29(12): 349 − 354. doi: 10.6052/j.issn.1000-4750.2011.09.0604

    ZHAO Chen, LIU Yuqing. Experimental study of shear capacity of perforbond connector [J]. Engineering Mechanics, 2012, 29(12): 349 − 354. (in Chinese) doi: 10.6052/j.issn.1000-4750.2011.09.0604
    [10] 杨勇, 陈阳. PBL剪力连接件抗剪承载力试验研究[J]. 工程力学, 2018, 35(9): 89 − 96. doi: 10.6052/j.issn.1000-4750.2017.05.0365

    YANG Yong, CHEN Yang. Experimental study on shear capacity of PBL shear connectors [J]. Engineering Mechanics, 2018, 35(9): 89 − 96. (in Chinese) doi: 10.6052/j.issn.1000-4750.2017.05.0365
    [11] 陈海, 郭子雄, 刘阳, 等. 斜板PBL剪力键受剪性能试验研究[J]. 建筑结构学报, 2022, 43(1): 209 − 218.

    CHEN Hai, GUO Zixiong, LIU Yang, et al. Experimental study on shear capacity of non-parallel type twin perfobond plate shear connector [J]. Journal of Building Structures, 2022, 43(1): 209 − 218. (in Chinese)
    [12] LOWE D, ROY K, DAS R, et al. Full scale experiments on splitting behaviour of concrete slabs in steel concrete composite beams with shear stud connection [J]. Structures, 2020, 23: 126 − 138. doi: 10.1016/j.istruc.2019.10.008
    [13] DING F X, YIN G A, WANG H B, et al. Static behavior of stud connectors in bi-direction push-off tests [J]. Thin-Walled Structures, 2017, 120: 307 − 318. doi: 10.1016/j.tws.2017.09.011
    [14] XU C, SUGIURA K, MASUYA H, et al. Experimental study on the biaxial loading effect on group stud shear connectors of steel-concrete composite bridges [J]. Journal of Bridge Engineering, 2015, 20(10): 04014110. doi: 10.1061/(ASCE)BE.1943-5592.0000718
    [15] KARAM M S, YAMAMOTO Y, NAKAMURA H, et al. Numerical evaluation of the perfobond (PBL) shear connector subjected to lateral pressure using coupled rigid body spring model (RBSM) and nonlinear solid finite element method (FEM) [J]. Crystals, 2020, 10(9): 10090743. doi: 10.3390/cryst10090743
    [16] 宋瑞年, 王潇碧, 占玉林, 等. 侧向压力作用下PBL剪力键的抗剪性能[J]. 铁道建筑, 2019, 59(12): 34 − 37.

    SONG Ruinian, WANG Xiaobi, ZHAN Yulin, et al. Shear performance of PBL shear connector under lateral pressure [J]. Railway Engineering, 2019, 59(12): 34 − 37. (in Chinese)
    [17] ZHAN Y L, YIN C, LIU F, et al. Pushout tests on headed studs and PBL shear connectors considering external pressure [J]. Journal of Bridge Engineering, 2020, 25(1): 04019125. doi: 10.1061/(ASCE)BE.1943-5592.0001506
    [18] OGUEJIOFOR E C, HOSAIN M U. A parametric study of perfobond rib shear connectors [J]. Canadian Journal of Civil Engineering, 1994, 21(4): 614 − 625.
    [19] GU J C, LIU D, DENG W Q, et al. Experimental study on the shear resistance of a comb-type perfobond rib shear connector [J]. Journal of Constructional Steel Research, 2019, 158: 279 − 289. doi: 10.1016/j.jcsr.2019.03.032
    [20] 杨勇, 陈阳, 蔡军伟. 开孔钢板剪力连接件静力性能试验[J]. 中国公路学报, 2017, 30(3): 255 − 263. doi: 10.3969/j.issn.1001-7372.2017.03.028

    YANG Yong, CHEN Yang, CAI Junwei. Experiment on static behavior of perfobond shear connectors [J]. China Journal of Highway and Transport, 2017, 30(3): 255 − 263. (in Chinese) doi: 10.3969/j.issn.1001-7372.2017.03.028
    [21] GUEZOULI S, LACHAL A. Numerical analysis of frictional contact effects in push-out tests [J]. Engineering Structures, 2012, 40: 39 − 50. doi: 10.1016/j.engstruct.2012.02.025
    [22] GB 50917−2013, 钢-混凝土组合桥梁设计规范[S]. 北京: 中国标准出版社, 2013.

    GB 50917−2013, Code for design of steel and concrete composite bridges [S]. Beijing: China National Standard, 2013. (in Chinese)
    [23] 陈海, 郭子雄, 刘阳, 等. 新型组合剪力键抗剪机理及承载力计算方法研究[J]. 工程力学, 2019, 36(3): 159 − 168. doi: 10.6052/j.issn.1000-4750.2018.01.0058

    CHEN Hai, GUO Zixiong, LIU Yang, et al. Study on the shear resisting mechanism and strength for an innovative composite shear connector [J]. Engineering Mechanics, 2019, 36(3): 159 − 168. (in Chinese) doi: 10.6052/j.issn.1000-4750.2018.01.0058
    [24] EN 1994-2: 2005, Eurocode 4-Design of composite steel and concrete structures-Part 2: General rules and rules for bridges [S]. Brussels: European Committee for Standardization, 2005.
    [25] ZHAO B Y, WANG X P, ZHANG C, et al. Structural integrity assessment of shield tunnel crossing of a railway bridge using orthogonal experimental design [J]. Engineering Failure Analysis, 2020, 114: 104594. doi: 10.1016/j.engfailanal.2020.104594
    [26] AISC-LRFD, Load and resistance factor design specification for steel structural steel buildings [S]. Chicago: Amercian Institute Steel Construction Inc, 1999.
    [27] BS EN 1994-1-1: 2004, Eurocode 4: Design of composite steel and concrete structures-Part 1-1: General rules and rules for buildings [S]. London (UK): British Standards Institution, 2004.
    [28] OGUEJIOFOR E C, HOSAIN M U. Numerical analysis of push-out specimens with perfobond rib connectors [J]. Computers and Structures, 1997, 62(4): 617 − 624. doi: 10.1016/S0045-7949(96)00270-2
  • 加载中
图(19) / 表(3)
计量
  • 文章访问数:  317
  • HTML全文浏览量:  72
  • PDF下载量:  39
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-24
  • 修回日期:  2022-04-11
  • 录用日期:  2022-04-23
  • 网络出版日期:  2022-04-23
  • 刊出日期:  2023-11-25

目录

    /

    返回文章
    返回