EFFECT OF AIR-MEMBRANE INTERACTION ON DYNAMIC PROPERTIES OF AN INFLATED MEMBRANE TUBE
-
摘要: 充气薄膜管属于柔性结构,荷载作用下产生的变形,会引起其内压改变,进而导致外围薄膜刚度的变化,对其变形产生重要影响,表现出内充气体压力与外围薄膜变形相互耦合的特点。该文采用有限元方法分析气-膜耦合作用对充气薄膜管动力特性的影响及其随影响因素的变化规律。通过将内充气体看作小扰动线性势流以考虑气-膜耦合作用以及内充气体附加质量的影响;通过建立内充气体的三种等效模型,分别将内充气体作用等效为外围薄膜静力边界条件、考虑内充气体附加质量影响的静力边界条件以及小扰动线性势流体,并将其相应的有限元分析结果进行对比,研究气-膜耦合作用和内充气体附加质量对充气薄膜管自振特性的影响及其随初始内压、长细比、膜厚以及端部约束类型的变化规律。研究结果表明:气-膜耦合作用以及内充气体的附加质量对低阶自振模态没有明显影响;气-膜耦合作用对自振频率有较显著的影响作用,而内充气体附加质量的影响则较小;随初始内压和长细比的增加,气-膜耦合作用对频率的影响体现出因阶次不同而不同的变化规律;气-膜耦合作用对频率的影响随膜厚的增加而降低,随约束程度的减弱而增强。该文的研究成果揭示了气-膜耦合作用对充气薄膜管自振特性的影响规律,有助于深入认识充气薄膜管的动力行为,确保其设计计算的合理性和可靠性。Abstract: An inflated membrane tube is a kind of flexible structure. Its deformation will result in a change in the inner pressure and then affect the stiffness and deformation of the enveloping membrane. This phenomenon reflects the interaction between the pressure of inner air and the deformation of enveloping membrane. The authors, using the finite element method, analyze the effect of air-membrane interaction on the dynamic properties of an inflated membrane tube and its variation with influencing factors. The inner air is treated as a kind of linear potential fluid to consider the effects of air-membrane interaction and added mass of the inner air. Three finite element models of the inflated membrane tube are developed with different methods to treat the inner air, i.e., the inner air is treated respectively as the static boundary conditions of the enveloping membrane, the static boundary conditions plus the added mass, and a kind of linear potential fluid. The numerical results obtained from these three models are compared to study the influences of air-membrane interaction and added mass on dynamic properties of the tube and their variations with the initial inner pressure, slenderness ratio, membrane thickness and constraint type. The comparisons indicate that air-membrane interaction and added mass of the inner air have little influence on the low-order modal shapes; air-membrane interaction plays a significant role in the natural frequencies while the added mass of inner air has a very small effect; with an increase in the initial inner pressure and slenderness ratio, the influence of air-membrane interaction on natural frequencies varies differently for different orders; The influence of air-membrane interaction on natural frequencies decreases with the increasing membrane thickness and is gradually strengthened when the end constraints are weakened. The present research reveals the dynamic effect of air-membrane interaction and is helpful to the understanding of the dynamic behavior of inflated membrane tubes for their rational and reliable design.
-
材料 厚度
h/mm密度
ρ/(kg·m−3)弹性模量
E/MPa泊松比 体积模量
κ/MPaKapton膜 0.075 1500 3500 0.35 − 铝材 4 2700 72000 0.30 − 空气 − 1.29 − − 0.101 参数 数值 参数 数值 膜厚h/m 5.1×10−5 泊松比ν 0.34 弹性模量E/MPa 2.551×103 长度L/m 1.2065 内压P0/kPa 12.065 密度ρ/(kg/m3) 1420 半径r/m 0.0381 − − 表 3 充气薄膜管自振模态
Table 3. Modal shapes of the inflated membrane tube
阶次 文献[48]试验 本文有限元 1 2 3 表 4 充气薄膜管自振频率
Table 4. Natural frequencies of the inflated membrane tube
表 5 内充气体的等效模型
Table 5. Equivalent models of the inner air
模型 描述 M1 将内充气体等效为外围薄膜的静力边界条件(即将内充气压以外荷载的形式沿其法线法向施加在外围薄膜上),不能考虑气-膜耦合作用以及内充气体附加质量的影响。外围薄膜的有限元模型见第2节。 M2 将内充气体等效为外围薄膜的静力边界条件,并通过修正薄膜密度的方法同时考虑内充气体附加质量的影响。外围薄膜的有限元模型见第2节。 M3 即本文建立的有限元模型(详见第2节),将内充气体看作小扰动线性势流,同时考虑了气-膜耦合作用和内充气体附加质量的影响。外围薄膜和内充气体的有限元模型见第2节。 表 6 影响因素及其他参数取值
Table 6. Values of the influencing factors and other parameters
影响因素 影响因素取值 其他参数取值 初始内压
P0/kPa2、4、6、8、10、12 r=50 mm、λ=7、
F-F、h=0.075 mm长细比λ 6、8、10、12、14 r=50 mm、P0=4 kPa、
F-F、h=0.075 mm膜厚h/mm 0.025、0.050、0.075、0.100 r=50 mm、P0=4 kPa、
λ=7、F-F端部约束 两端固定(F-F)、两端简支(S-S)、
一端固定一端简支(F-S)r=50 mm、P0=6 kPa、
λ=7、h=0.075 mm注:r为充气薄膜管半径。 表 7 不同初始内压情况下的前5阶自振模态
Table 7. The first five mode shapes for different initial internal pressures
阶数 初始内压P0/kPa 2 4 6 8 10 12 1 2 3 4 5 表 8 不同长细比情况下前5阶自振模态
Table 8. The first five mode shapes for different slenderness ratios
阶数 长细比λ 6 8 10 12 14 1 2 3 4 5 表 9 不同膜厚情况下前5阶自振模态
Table 9. The first five modal shapes for different membrane thickness
阶数 膜厚h/mm 0.025 0.050 0.075 0.100 1 2 3 4 5 表 10 不同端部约束情况下前5阶自振模态
Table 10. The first five modal shapes for different end constraints
阶次 约束 两端固定 一固一简 两端简支 1 2 3 4 5 -
[1] GONG J H, YANG X Y, ZHANG Z Z, et al. Theoretical analysis and experimental study of an air inflated membrane structure [J]. Journal of Zhejiang University- Science A, 2010, 11(1): 25 − 33. doi: 10.1631/jzus.A0900127 [2] 赵俊钊, 陈务军, 付功义, 等. 充气膜结构零应力态求解[J]. 工程力学, 2012, 29(12): 134 − 140. doi: 10.6052/j.issn.1000-4750.2011.03.0153ZHAO Junzhao, CHEN Wujun, FU Gongyi, et al. The algorithm of zero-stress state of pneumatic stressed membrane structure [J]. Engineering Mechanics, 2012, 29(12): 134 − 140. (in Chinese) doi: 10.6052/j.issn.1000-4750.2011.03.0153 [3] 何艳丽, 陈务军, 赵俊钊. 充气膜结构的成形理论与试验研究[J]. 工程力学, 2013, 30(4): 269 − 274.HE Yanli, CHEN Wujun, ZHAO Junzhao. Research on forming theory and test of inflatable membrane structures [J]. Engineering Mechanics, 2013, 30(4): 269 − 274. (in Chinese) [4] 赵兵, 陈务军, 胡建辉, 等. 基于摄影测量的充气膜结构有限元建模方法[J]. 工程力学, 2017, 34(3): 141 − 148. doi: 10.6052/j.issn.1000-4750.2015.09.0736ZHAO Bing, CHEN Wujun, HU Jianhui, et al. Finite element modelling of inflatable membrane structure based on photogrammetry [J]. Engineering Mechanics, 2017, 34(3): 141 − 148. (in Chinese) doi: 10.6052/j.issn.1000-4750.2015.09.0736 [5] 成新兴, 张超, 牛国平, 等. 大跨度充气膜结构形态分析方法研究[J]. 西安建筑科技大学学报(自然科学版), 2021, 53(3): 344 − 349, 378.CHEN Xinxing, ZHANG Chao, NIU Guoping, et al. Research on morphological analysis method of long-span inflatable membrane structures [J]. Journal of Xi’an University of Architecture and Technology (Natural Science Edition), 2021, 53(3): 344 − 349, 378. (in Chinese) [6] LIGARO S S, BARSOTTI R. Equilibrium shapes of inflated inextensible membranes [J]. International Journal of Solids and Structures, 2008, 45(21): 5584 − 5598. doi: 10.1016/j.ijsolstr.2008.06.008 [7] GHAVANLOO E, DANESHMAND F. A semi-analytical approach for the nonlinear two-dimensional analysis of fluid-filled thin-walled pliable membrane tubes [J]. European Journal of Mechanics A-Solids, 2009, 28(3): 626 − 637. doi: 10.1016/j.euromechsol.2008.11.006 [8] BARSOTTI R, LIGARO S S. Static response of elastic inflated wrinkled membranes [J]. Computational Mechanics, 2014, 53(5): 1001 − 1013. doi: 10.1007/s00466-013-0945-5 [9] CHAUDHURI A, DAS GUPTA A. On the static and dynamic analysis of inflated hyperelastic circular membranes [J]. Journal of the Mechanics and Physics of Solids, 2014, 64: 302 − 315. doi: 10.1016/j.jmps.2013.11.013 [10] THOMAS J C, LE VAN A. An exact solution for inflated orthotropic membrane tubes [J]. Thin-walled Structures, 2013, 67: 116 − 120. doi: 10.1016/j.tws.2013.01.012 [11] NGUYEN Q T, THOMAS J C, LE VAN A. An analytical solution for an inflated orthotropic membrane tube with an arbitrarily oriented orthotropy basis [J]. Engineering Structures, 2013, 56: 1080 − 1091. doi: 10.1016/j.engstruct.2013.06.012 [12] ROYCHOWDHURY S, DASGUPTA A. Inflating a flat toroidal membrane [J]. International Journal of Solids and Structures, 2015, 67/68: 182 − 191. doi: 10.1016/j.ijsolstr.2015.04.019 [13] BARSOTTI R. Approximated solutions for axisymmetric wrinkled inflated membranes [J]. Journal of Applied Mechanics-Transactions of the ASME, 2015, 82(11): 111007. doi: 10.1115/1.4031243 [14] ZHAO B, CHEN W J. Rate-dependent mechanical properties and elastic modulus of ETFE foils used in inflated forming of transparency air-inflated cushion membrane structures [J]. Engineering Structures, 2021, 227: 111404. doi: 10.1016/j.engstruct.2020.111404 [15] 杨超, 罗尧治, 郑延丰. 正交异性膜材大变形行为的有限质点法求解[J]. 工程力学, 2019, 36(7): 18 − 29. doi: 10.6052/j.issn.1000-4750.2018.06.0318YANG Chao, LUO Yaozhi, ZHENG Yanfeng. Large deformation analysis of orthotropic membranes using the finite particle method [J]. Engineering Mechanics, 2019, 36(7): 18 − 29. (in Chinese) doi: 10.6052/j.issn.1000-4750.2018.06.0318 [16] YANG T, LUO M, ZOU Z Y, et al. Mechanical properties of the surface membrane of lattice spacer-fabric flexible inflatable composites [J]. Textile Research Journal, 2021, 92(7/8): 1088 − 1097. [17] PAMPLONA D C, MOTA D E J S. Numerical and experimental analysis of inflating a circular hyperelastic membrane over a rigid and elastic foundation [J]. International Journal of Mechanical Sciences, 2012, 65(1): 18 − 23. doi: 10.1016/j.ijmecsci.2012.08.010 [18] KUMAR N, DASGUPTA A. On the static and dynamic contact problem of an inflated spherical viscoelastic membrane [J]. Journal of Applied Mechanics-Transactions of the ASME, 2015, 82(12): 121010. doi: 10.1115/1.4031484 [19] PATIL A, DASGUPTA A, ERIKSSON A. Contact mechanics of a circular membrane inflated against a deformable substrate [J]. International Journal of Solids and Structures, 2015, 67/68: 250 − 262. doi: 10.1016/j.ijsolstr.2015.04.025 [20] YANG X W, YU L X, LONG R. Contact mechanics of inflated circular membrane under large deformation: Analytical solutions [J]. International Journal of Solids and Structures, 2021, 233: 111222. doi: 10.1016/j.ijsolstr.2021.111222 [21] KUMAR N, VISHWAKARMA U, DASGUPTA A. On the mechanics of inflated hyperelastic membrane-membrane contact problem [J]. International Journal of Non-Linear Mechanics, 2021, 137: 103805. doi: 10.1016/j.ijnonlinmec.2021.103805 [22] 王长国, 杜星文, 赫晓东. 空间充气薄膜结构的褶皱分析[J]. 力学学报, 2008, 40(3): 331 − 338. doi: 10.3321/j.issn:0459-1879.2008.03.006WANG Changguo, DU Xingwen, HE Xiaodong. Wrinkling analysis of space inflatable membrane structures [J]. Chinese Journal of Theoretical and Applied Mechanics, 2008, 40(3): 331 − 338. (in Chinese) doi: 10.3321/j.issn:0459-1879.2008.03.006 [23] 王长国, 杜星文, 赫晓东. 充气薄膜管的弯皱行为分析[J]. 工程力学, 2009, 26(2): 210 − 215.WANG Changguo, DU Xingwen, HE Xiaodong. Bending-wrinkling behavior analysis for inflatable membrane boom [J]. Engineering Mechanics, 2009, 26(2): 210 − 215. (in Chinese) [24] WANG C G, TAN H F, DU X W, et al. A new model for wrinkling and collapse analysis of membrane inflated beam [J]. Acta Mechanica Sinica, 2010, 26(4): 617 − 623. doi: 10.1007/s10409-010-0348-1 [25] 杜振勇, 王长国, 谭惠丰. 受弯充气锥台的褶皱特性分析[J]. 工程力学, 2011, 28(7): 74 − 78.DU Zhenyong, WANG Changguo, TAN Huifeng. Wrinkling characteristic analysis of a conical inflated cantilever beam under bending [J]. Engineering Mechanics, 2011, 28(7): 74 − 78. (in Chinese) [26] WANG C G, DU Z Y, TAN H F. Initial wrinkling and its evolution of membrane inflated cone in bending [J]. Thin-Walled Structures, 2012, 59: 97 − 102. doi: 10.1016/j.tws.2012.05.007 [27] 王长国, 谢军, 谭惠丰. 薄膜充气拱褶皱特性分析[J]. 哈尔滨工业大学学报, 2013, 45(3): 66 − 69. doi: 10.11918/j.issn.0367-6234.2013.03.012WANG Changguo, XIE Jun, TAN Huifeng. Wrinkling characteristics analysis of inflated membrane arch [J]. Journal of Harbin Institute of Technology, 2013, 45(3): 66 − 69. (in Chinese) doi: 10.11918/j.issn.0367-6234.2013.03.012 [28] TAO Q, WANG C G, XUE Z M, et al. Wrinkling and collapse of mesh reinforced membrane inflated beam under bending [J]. Acta Astronautica, 2016, 128: 551 − 559. doi: 10.1016/j.actaastro.2016.08.021 [29] 张亮, 曹进军, 董凯骏, 等. 充气薄膜褶皱分析的高效互补有限元列式[J]. 工程力学, 2020, 37(8): 1 − 9. doi: 10.6052/j.issn.1000-4750.2019.09.0533ZHANG Liang, CAO Jinjun, DONG Kaijun, et al. An efficient complementarity finite element formulation for wrinkling analysis of pneumaric membranes [J]. Engineering Mechanics, 2020, 37(8): 1 − 9. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.09.0533 [30] 谭惠丰, 李云良, 毛丽娜, 等. 空间充气展开支撑管的自振特性研究[J]. 哈尔滨工业大学学报, 2008, 40(5): 709 − 713. doi: 10.3321/j.issn:0367-6234.2008.05.009TAN Huifeng, LI Yunliang, MAO Lina, et al. Free vibration characteristics of inflatable supporting tube [J]. Journal of Harbin Institute of Technology, 2008, 40(5): 709 − 713. (in Chinese) doi: 10.3321/j.issn:0367-6234.2008.05.009 [31] WANG C G, XIE J, TAN H F. The modal analysis and modal behavior investigations on the wrinkled membrane inflated beam [J]. Acta Astronautica, 2012, 81: 660 − 666. doi: 10.1016/j.actaastro.2012.08.015 [32] WANG C G, XIE J, TAN H F. Vibration evaluation of wrinkled membrane inflated beam [J]. Mechanics of Advanced Materials and Structures, 2015, 22(5): 376 − 382. doi: 10.1080/15376494.2012.736062 [33] HU Y, CHEN W J, CHEN Y F, et al. Modal behaviors and influencing factors analysis of inflated membrane structures [J]. Engineering Structures, 2017, 132: 413 − 427. doi: 10.1016/j.engstruct.2016.11.037 [34] 刘晓峰, 谭惠丰, 杜星文. 充气太空结构及其展开模拟研究[J]. 哈尔滨工业大学学报, 2004, 36(4): 508 − 512. doi: 10.3321/j.issn:0367-6234.2004.04.027LIU Xiaofeng, TAN Huifeng, DU Xingwen. Inflatable space structures and deployment simulation [J]. Journal of Harbin Institute of Technology, 2004, 36(4): 508 − 512. (in Chinese) doi: 10.3321/j.issn:0367-6234.2004.04.027 [35] 卫剑征, 谭惠丰, 苗常青, 等. 空间折叠薄膜管的充气展开动力学实验研究[J]. 力学学报, 2011, 43(1): 202 − 207. doi: 10.6052/0459-1879-2011-1-lxxb2009-406WEI Jianzheng, TAN Huifeng, MIAO Changqing, et al. Experimental research of inflatable deployment dynamics of folded membrane booms [J]. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(1): 202 − 207. (in Chinese) doi: 10.6052/0459-1879-2011-1-lxxb2009-406 [36] BBUZIDI R, BUYTET S, LE VAN A. A numerical and experimental study of the quasi-static deployment of membrane tubes [J]. International Journal of Solids and Structures, 2013, 50(5): 651 − 661. doi: 10.1016/j.ijsolstr.2012.10.027 [37] 黄磊. 充气管展开控制方案研究[D]. 哈尔滨: 哈尔滨工业大学, 2017.HUANG Lei. Study on the control of inflatable tube deployment [D]. Harbin: Harbin Institute of Technology, 2017. (in Chinese) [38] 张建, 杨庆山, 李波. 气枕式充气膜结构形态与受力分析[J]. 哈尔滨工业大学学报, 2008, 40(12): 2020 − 2023. doi: 10.3321/j.issn:0367-6234.2008.12.036ZHANG Jian, YANG Qingshan, LI Bo. Form-state and loading analysis of air-flated cushion membrane structures [J]. Journal of Harbin Institute of Technology, 2008, 40(12): 2020 − 2023. (in Chinese) doi: 10.3321/j.issn:0367-6234.2008.12.036 [39] COELHO M, ROEHL D, BLETZINGER K U. Numerical and analytical solutions with finite strains for circular inflated membranes considering pressure-volume coupling [J]. International Journal of Mechanical Sciences, 2014, 82: 122 − 130. doi: 10.1016/j.ijmecsci.2014.03.012 [40] 高海健, 陈务军, 付功义. 预应力薄膜充气梁模态的分析方法及特性[J]. 华南理工大学学报(自然科学版), 2010, 38(7): 135 − 139.GAO Haijian, CHEN Wujun, FU Gongyi. Modal analysis method and modal behavior of prestressed inflatable fabric beam [J]. Journal of South China University of Technology (Natural Science Edition), 2010, 38(7): 135 − 139. (in Chinese) [41] 马瑞强. 充气展开薄膜管气固耦合特性研究[D]. 哈尔滨: 哈尔滨工业大学, 2014.MA Ruiqiang. Research on gas-solid coupling of inflatable membrane boom [D]. Haerbin: Harbin Institute of Technology, 2014. (in Chinese) [42] 卫剑征. 空间折叠薄膜管充气展开过程气固耦合问题研究[D]. 哈尔滨: 哈尔滨工业大学, 2008.WEI Jianzheng. Research on gas-solid interaction problem in the inflatable deployment process of space folded membrane boom [D]. Haerbin: Harbin Institute of Technology, 2008. (in Chinese) [43] WANG X F, FU H J, LAW S S, et al. Experimental study on the interaction between inner air and enveloping membrane of inflated membrane tubes [J]. Engineering Structures, 2020, 219: 110892. doi: 10.1016/j.engstruct.2020.110892 [44] 王晓峰, 付慧杰, 杨庆山. 充气薄膜管气-膜耦合作用的有限元分析[J]. 工程力学, 2021, 38(5): 161 − 170, 190. doi: 10.6052/j.issn.1000-4750.2020.06.0395WANG Xiaofeng, FU Huijie, YANG Qingshan. Finite element analysis of air-membrane interaction in inflated membrane tubes [J]. Engineering Mechanics, 2021, 38(5): 161 − 170, 190. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.06.0395 [45] 徐芝纶. 弹性力学[M]. 第3版. 北京: 高等教育出版社, 1990.XU Zhilun. Elastic mechanics [M]. 3rd ed. Beijing: Higher Education Press, 1990. (in Chinese) [46] 李鹏, 杨庆山. 充气膜结构内充气体与外部膜材的共同作用理论模型[J]. 力学学报, 2013, 45(6): 919 − 927. doi: 10.6052/0459-1879-13-019LI Peng, YANG Qingshan. Interaction model of the enclosed air and the outer membrane [J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(6): 919 − 927. (in Chinese) doi: 10.6052/0459-1879-13-019 [47] 吴望一. 流体力学[M]. 北京: 北京大学出版社, 1982.WU Wangyi. Fluid mechanics [M]. Beijing: Peking University Press, 1982. (in Chinese) [48] YOUNG L G, RAMANATHAN S, HU J, et al. Numerical and experimental dynamic characteristics of thin-film membranes [J]. International Journal of Solids and Structures, 2005, 42(9): 3001 − 3025. -