留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

长周期地震动下大跨空间结构空气弹簧-摩擦摆三维隔震体系振动控制分析

景铭 韩庆华 芦燕 齐朋

景铭, 韩庆华, 芦燕, 齐朋. 长周期地震动下大跨空间结构空气弹簧-摩擦摆三维隔震体系振动控制分析[J]. 工程力学, 2023, 40(11): 31-45. doi: 10.6052/j.issn.1000-4750.2022.01.0101
引用本文: 景铭, 韩庆华, 芦燕, 齐朋. 长周期地震动下大跨空间结构空气弹簧-摩擦摆三维隔震体系振动控制分析[J]. 工程力学, 2023, 40(11): 31-45. doi: 10.6052/j.issn.1000-4750.2022.01.0101
JING Ming, HAN Qing-hua, LU Yan, QI Peng. VIBRATION CONTROL ANALYSIS OF THE AIR SPRING-FPS THREE-DIMENSIONAL ISOLATED STRUCTURE OF LARGE-SPAN SPATIAL STRUCTURE SUBJECTED TO LONG-PERIOD GROUND MOTIONS[J]. Engineering Mechanics, 2023, 40(11): 31-45. doi: 10.6052/j.issn.1000-4750.2022.01.0101
Citation: JING Ming, HAN Qing-hua, LU Yan, QI Peng. VIBRATION CONTROL ANALYSIS OF THE AIR SPRING-FPS THREE-DIMENSIONAL ISOLATED STRUCTURE OF LARGE-SPAN SPATIAL STRUCTURE SUBJECTED TO LONG-PERIOD GROUND MOTIONS[J]. Engineering Mechanics, 2023, 40(11): 31-45. doi: 10.6052/j.issn.1000-4750.2022.01.0101

长周期地震动下大跨空间结构空气弹簧-摩擦摆三维隔震体系振动控制分析

doi: 10.6052/j.issn.1000-4750.2022.01.0101
基金项目: 国家自然科学基金项目(U1939208,52022067)
详细信息
    作者简介:

    景 铭(1993−),女,天津人,博士生,主要从事大跨空间结构振动控制的研究(E-mail: mjing@tju.edu.cn)

    韩庆华(1971−),男,山东人,教授,博士,主要从事钢结构及大跨空间结构的研究(E-mail: qhhan@tju.edu.cn)

    齐 朋(1983−),男,山东人,高工,学士,主要从事土木工程施工技术及管理研究(E-mail: 15398790@qq.com)

    通讯作者:

    芦 燕(1986−),女,山西人,教授,博士,主要从事大跨空间结构抗震性能的研究(E-mail: yanlu86@tju.edu.cn)

  • 中图分类号: TU352.1

VIBRATION CONTROL ANALYSIS OF THE AIR SPRING-FPS THREE-DIMENSIONAL ISOLATED STRUCTURE OF LARGE-SPAN SPATIAL STRUCTURE SUBJECTED TO LONG-PERIOD GROUND MOTIONS

  • 摘要: 该文将新型空气弹簧-摩擦摆三维隔震支座应用于大跨单层球面网壳中,探讨了长周期地震动对三维隔震体系振动控制效果的影响规律。该三维隔震支座可有效降低结构在地震动作用下的响应,当地震动峰值加速度(PGA)相同时,普通地震动下的隔震效果最优,近断层脉冲型地震动下隔震效果次之,远场长周期地震动下隔震效果最差。该现象与长周期地震动与和长周期隔震结构之间的类共振效应有关。随着支座刚度的减小,普通地震动和近断层脉冲地震动作用下的隔震效果提高,远场长周期地震动作用下的隔震效果降低。远场长周期地震动低频分量丰富,其反应谱具有典型的双峰特性,导致结构响应在长周期段随结构周期的延长而增大。进行三维隔震设计时,建议传递比TR取值大于0.2,既保证隔震效果,又能控制三维隔震支座竖向位移响应在设计极限位移内。
  • 图  1  铰支座和三维隔震支座分布位置

    Figure  1.  Layout of hinged bearings and 3D isolation bearings

    图  2  空气弹簧-摩擦摆三维隔震支座

    Figure  2.  Air spring-FPS 3D isolation bearing

    图  3  摩擦摆分析模型

    Figure  3.  Analytical model of the FPS

    图  4  三维隔震支座水平力学模型

    Figure  4.  Mechanical model of the horizontal part of the 3D isolation bearing

    图  5  三维隔震支座竖向力学模型

    Figure  5.  Mechanical model of the vertical part of the 3D isolation bearing

    图  6  竖向隔震装置的理论模型

    Figure  6.  Theoretical model of vertical isolation device

    图  7  激励频率与支座竖向静位移关系

    Figure  7.  Relationship between the vertical static displacement and excitation frequency

    图  8  所选地震动基本特性

    Figure  8.  Basic characteristics of the ground motions

    图  9  反应谱对比

    Figure  9.  Comparison of the response spectra

    图  10  节点分布

    Figure  10.  Distribution of nodes

    图  11  普通地震动下平均节点峰值加速度

    Figure  11.  Mean of the nodal peak acceleration under ordinary ground motions

    图  12  近断层脉冲型地震动下平均节点峰值加速度

    Figure  12.  Mean of the nodal peak acceleration under near-fault pulse-like ground motions

    图  13  远场长周期地震动下平均节点峰值加速度

    Figure  13.  Mean of the nodal peak acceleration under far-field long-period ground motions

    图  14  不同地震动下平均杆件峰值等效应力

    Figure  14.  Mean of the member peak Mises stress under different ground motions

    图  15  El Centro、TCU068和ILA056作用下隔震支座水平位移时程曲线

    Figure  15.  Horizontal displacement time histories of the isolation bearing under El Centro, TCU068, and ILA056 ground motions

    图  16  滑面摩擦系数μ与滑面曲率半径R对节点峰值加速度的影响

    Figure  16.  Influence of friction coefficient of the sliding surface μ and radius of the sliding surface R on the nodal peak acceleration

    图  17  滑面摩擦系数μ与滑面曲率半径R对杆件峰值等效应力的影响

    Figure  17.  Influence of friction coefficient of the sliding surface μ and radius of the sliding surface R on the member peak Mises stress

    图  18  滑面摩擦系数μ与滑面曲率半径R对支座位移响应的影响

    Figure  18.  Influence of friction coefficient of the sliding surface μ and radius of the sliding surface R on the bearing displacement

    图  19  水平加速度反应谱及不同μ对应的结构水平自振周期

    Figure  19.  Horizontal acceleration response spectra and the values for the structural horizontal period corresponding to different μ

    图  20  TR对节点峰值加速度的影响

    Figure  20.  Influence of TR on the nodal peak acceleration

    图  21  TR对杆件峰值等效应力的影响

    Figure  21.  Influence of TR on the member peak Mises stress

    图  22  TR对支座位移响应的影响

    Figure  22.  Influence of TR on the bearing displacement

    图  23  竖向加速度反应谱以及不同TR对应的结构竖向自振周期

    Figure  23.  Vertical acceleration response spectra and the values for the structural vertical period corresponding to different TR

    表  1  所选地震动

    Table  1.   Selected ground motions

    地震动类型编号台站地震
    普通1El CentroImperial Valley, USA
    2KakogawaKobe, Japan
    3NorthridgeWhittier Narrows, USA
    4TaftKern County, USA
    5Whittier NarrowsWhittier Narrows, USA
    近断层脉冲型6TCU049Chi-Chi, China
    7TCU054Chi-Chi, China
    8TCU067Chi-Chi, China
    9TCU068Chi-Chi, China
    10TCU120Chi-Chi, China
    远场长周期11ILA003Chi-Chi, China
    12ILA004Chi-Chi, China
    13ILA005Chi-Chi, China
    14ILA056Chi-Chi, China
    15TCU010Chi-Chi, China
    下载: 导出CSV

    表  2  所选地震动下支座峰值位移

    Table  2.   Peak bearing displacement under the selected ground motions /mm

    地震动0.07 g0.4 g
    xyzxyz
    普通El Centro43.047.01.1229.1221.37.3
    Kakogawa42.341.11.7182.9164.47.3
    Northridge31.931.80.449.442.92.1
    Taft42.539.02.0130.3113.67.2
    Whittier Narrows31.931.80.249.442.91.8
    平均38.338.11.1128.2117.05.2
    近断层TCU04942.748.21.5144.8171.66.8
    TCU05458.054.42.4252.2268.18.4
    TCU06754.654.52.5388.1216.911.3
    TCU06866.972.51.5348.2528.511.0
    TCU12071.749.72.7539.5209.512.0
    平均58.855.82.1334.6278.99.9
    远场ILA00355.378.33.0384.2566.611.4
    ILA00478.4102.24.2543.9967.519.1
    ILA00568.375.44.0414.6547.315.0
    ILA056105.6115.53.5529.2978.919.2
    TCU01061.457.12.6653.6312.411.4
    平均73.885.73.4505.1674.515.8
    下载: 导出CSV

    表  3  三维隔震支座水平刚度

    Table  3.   Horizontal stiffness of the 3D isolation bearing /(kN/m)

    μ初始刚度屈服后刚度
    R=1 mR=1.5 mR=2 mR=1 mR=1.5 mR=2 m
    0.0167206720672016801120840
    0.0213440134401344016801120840
    0.0320160201602016016801120840
    0.0426880268802688016801120840
    0.0533600336003360016801120840
    0.0640320403204032016801120840
    0.0747040470404704016801120840
    0.0853760537605376016801120840
    0.0960480604806048016801120840
    0.167200672006720016801120840
    注:R为滑面曲率半径。
    下载: 导出CSV

    表  4  三维隔震支座竖向刚度

    Table  4.   Vertical stiffness of the 3D isolation bearing /(kN·m−1)

    TR0.050.10.20.30.4
    竖向刚度1135821684397545504468150
    TR0.50.60.70.80.9
    竖向刚度795088944698216106010112985
    下载: 导出CSV
  • [1] LIU Z, LI X, ZHANG Z. Quantitative identification of near-fault ground motions based on ensemble empirical mode decomposition [J]. KSCE Journal of Civil Engineering, 2020, 24(3): 922 − 930. doi: 10.1007/s12205-020-1491-2
    [2] YALCIN O F, DICLELI M. Effect of the high frequency components of near-fault ground motions on the response of linear and nonlinear SDOF systems: A moving average filtering approach [J]. Soil Dynamics and Earthquake Engineering, 2020, 129: 105922-1 − 105922-16.
    [3] 陈笑宇, 王东升, 付建宇, 等. 近断层地震动脉冲特性研究综述[J]. 工程力学, 2021, 38(8): 1 − 14. doi: 10.6052/j.issn.1000-4750.2020.08.0582

    CHEN Xiaoyu, WANG Dongsheng, FU Jianyu, et al. State-of-the-art review on pulse characteristics of near-fault ground motions [J]. Engineering Mechanics, 2021, 38(8): 1 − 14. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.08.0582
    [4] KOKETSU K, MIYAKE H, KOKETSU K, et al. A seismological overview of long-period ground motion [J]. Journal of Seismology, 2008, 12(2): 133 − 143. doi: 10.1007/s10950-007-9080-0
    [5] CHENG Y, DONG Y, QIN L, et al. Seismic energy response of SDOF systems subjected to long-period ground motion records [J]. Advances in Civil Engineering, 2021, 2021: 1 − 20.
    [6] DAI M, LI Y, LIU S, et al. Identification of far-field long-period ground motions using phase derivatives [J]. Advances in Civil Engineering, 2019, 2019: 1065830.
    [7] 杜东升, 宋宝玺, 许伟志, 等. 高层钢结构考虑长周期地震动的减震加固研究[J]. 工程力学, 2020, 37(7): 189 − 200. doi: 10.6052/j.issn.1000-4750.2019.09.0508

    DU Dongsheng, SONG Baoxi, XU Weizhi, et al. Seismic retrofit of a high-rise steel structure considering long-period and long-duration ground motions [J]. Engineering Mechanics, 2020, 37(7): 189 − 200. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.09.0508
    [8] GRAVES R W. Preliminary analysis of long-period basin response in the Los Angeles region from the 1994 Northridge earthquake [J]. Geophysical Research Letters, 1995, 22(2): 101 − 104. doi: 10.1029/94GL02894
    [9] KANAORI Y, KAWAKAMI S I. The 1995 7.2 magnitude Kobe earthquake and the Arima-Takatsuki tectonic line: Implications of the seismic risk for central Japan [J]. Engineering Geology, 1996, 43(2/3): 61 − 82.
    [10] WANG G Q, ZHOU X Y, ZHANG P Z, et al. Characteristics of amplitude and duration for near fault strong ground motion from the 1999 Chi-Chi, Taiwan earthquake [J]. Soil Dynamics and Earthquake Engineering, 2002, 22(1): 73 − 96. doi: 10.1016/S0267-7261(01)00047-1
    [11] HATAYAMA K. Lessons from the 2003 Tokachi-oki, Japan, earthquake for prediction of long-period strong ground motions and sloshing damage to oil storage tanks [J]. Journal of Seismology, 2008, 12(2): 255 − 263. doi: 10.1007/s10950-007-9066-y
    [12] 梁兴文, 董振平, 王应生, 等. 汶川地震中离震中较远地区的高层建筑的震害[J]. 地震工程与工程振动, 2009, 29(1): 24 − 31. doi: 10.13197/j.eeev.2009.01.003

    LIANG Xingwen, DONG Zhenping, WANG Yingsheng. et al. Damage to tall buildings in areas with large epicentral distance during M8.0 Wenchuan earthquake [J]. Journal of Earthquake Engineering and Engineering Vibration, 2009, 29(1): 24 − 31. (in Chinese) doi: 10.13197/j.eeev.2009.01.003
    [13] 杨伟林, 朱升初, 洪海春, 等. 汶川地震远场地震动特征及其对长周期结构影响的分析[J]. 防灾减灾工程学报, 2009, 29(4): 473 − 478.

    YANG Weilin, ZHU Shengchu, HONG Haichun, el al. Analysis of remote site vibration characteristics of the Wenchuan earthquake and its effect on long-period structures [J]. Journal of Disaster Prevention and Mitigation Engineering, 2009, 29(4): 473 − 478. (in Chinese)
    [14] TAKEWAKI I, MURAKAMI S, FUJITA K, et al. The 2011 off the Pacific coast of Tohoku earthquake and response of high-rise buildings under long-period ground motions [J]. Soil Dynamics and Earthquake Engineering, 2011, 31(11): 1511 − 1528. doi: 10.1016/j.soildyn.2011.06.001
    [15] 孙颖, 陈天海, 卓卫东, 等. 长周期地震动作用下隔震连续梁桥地震反应特性研究[J]. 工程力学, 2016, 33(增刊 1): 244 − 250. doi: 10.6052/j.issn.1000-4750.2015.05.S054

    SUN Ying, CHEN Tianhai, ZHUO Weidong, et al. Study on seismic response characteristics of isolated continuous bridges under long-period ground motion [J]. Engineering Mechanics, 2016, 33(Suppl 1): 244 − 250. (in Chinese) doi: 10.6052/j.issn.1000-4750.2015.05.S054
    [16] 王博, 白国良, 代慧娟. 典型地震动作用下长周期单自由度体系地震反应分析[J]. 振动与冲击, 2013, 32(15): 190 − 196. doi: 10.3969/j.issn.1000-3835.2013.15.034

    WANG Bo, BAI Guoliang, DAI Huijuan. Seismic response analysis of long-period SDOF system under typical ground motions [J]. Journal of Vibration and Shock, 2013, 32(15): 190 − 196. (in Chinese) doi: 10.3969/j.issn.1000-3835.2013.15.034
    [17] MAKRIS N, CHANG S P. Effect of viscous, viscoplastic and friction damping on the response of seismic isolated structures [J]. Earthquake Engineering Structural Dynamics, 2000, 29(1): 85 − 107. doi: 10.1002/(SICI)1096-9845(200001)29:1<85::AID-EQE902>3.0.CO;2-N
    [18] HAN Q H, JING M, LU Y, et al. Mechanical behaviors of air spring-FPS three-dimensional isolation bearing and isolation performance analysis [J]. Soil Dynamics and Earthquake Engineering, 2021, 149: 106872. doi: 10.1016/j.soildyn.2021.106872
    [19] 杜修力, 许紫刚, 许成顺, 等. 摩擦摆支座在地下地铁车站结构中的减震效果研究[J]. 工程力学, 2019, 36(9): 60 − 67. doi: 10.6052/j.issn.1000-4750.2018.04.0225

    DU Xiuli, XU Zigang, XU Chengshun, et al. Seismic mitigation effect analysis on friction pendulum bearingapplied in the underground subway station [J]. Engineering Mechanics, 2019, 36(9): 60 − 67. (in Chinese) doi: 10.6052/j.issn.1000-4750.2018.04.0225
    [20] BARRERA-VARGAS C A, DÍAZ I M, SORIA J M, et al. Enhancing friction pendulum isolation systems using passive and semi-active dampers [J]. Applied Sciences, 2020, 10(16): 5621. doi: 10.3390/app10165621
    [21] CLOUGH RW, PENZIEN J. Dynamics of structures [M]. Beijing: Higher Education Press, 2006.
  • 加载中
图(23) / 表(4)
计量
  • 文章访问数:  253
  • HTML全文浏览量:  94
  • PDF下载量:  81
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-21
  • 修回日期:  2022-05-24
  • 网络出版日期:  2022-06-25
  • 刊出日期:  2023-11-25

目录

    /

    返回文章
    返回