VIBRATION CONTROL ANALYSIS OF THE AIR SPRING-FPS THREE-DIMENSIONAL ISOLATED STRUCTURE OF LARGE-SPAN SPATIAL STRUCTURE SUBJECTED TO LONG-PERIOD GROUND MOTIONS
-
摘要: 该文将新型空气弹簧-摩擦摆三维隔震支座应用于大跨单层球面网壳中,探讨了长周期地震动对三维隔震体系振动控制效果的影响规律。该三维隔震支座可有效降低结构在地震动作用下的响应,当地震动峰值加速度(PGA)相同时,普通地震动下的隔震效果最优,近断层脉冲型地震动下隔震效果次之,远场长周期地震动下隔震效果最差。该现象与长周期地震动与和长周期隔震结构之间的类共振效应有关。随着支座刚度的减小,普通地震动和近断层脉冲地震动作用下的隔震效果提高,远场长周期地震动作用下的隔震效果降低。远场长周期地震动低频分量丰富,其反应谱具有典型的双峰特性,导致结构响应在长周期段随结构周期的延长而增大。进行三维隔震设计时,建议传递比TR取值大于0.2,既保证隔震效果,又能控制三维隔震支座竖向位移响应在设计极限位移内。Abstract: The seismic behavior of a large-span single-layer spherical reticulated shell with the novel air spring-FPS three-dimensional (3D) isolation bearing is investigated. The influence of long-period ground motions on the vibration control effect of the 3D isolated structure is discussed. The dynamic time-history analysis indicated that 3D isolation bearings can effectively reduce the structural seismic response under various ground motions. With the same peak ground acceleration (PGA), the isolation effect of ordinary ground motions is better than near-fault pulse-like ground motions and much better than far-field long-period ground motions. This phenomenon is related to the quasi-resonance effect between the long-period ground motions and the long-period isolated structures. With the decrease of the bearing stiffness, the isolation effect is improved for ordinary ground motion and near-fault pulse-like ground motion while it is reduced for far-field long-period ground motions. The abundant low-frequency characteristics of far-field long-period ground motion make its response spectra have bimodal characteristics, resulting in the increase of the structural response with the period prolongation. TR is suggested to be larger than 0.2 in order to not only obtain a good isolation effect but also limit the vertical bearing displacement with an allowable value for a three-dimensional isolated structure.
-
表 1 所选地震动
Table 1. Selected ground motions
地震动类型 编号 台站 地震 普通 1 El Centro Imperial Valley, USA 2 Kakogawa Kobe, Japan 3 Northridge Whittier Narrows, USA 4 Taft Kern County, USA 5 Whittier Narrows Whittier Narrows, USA 近断层脉冲型 6 TCU049 Chi-Chi, China 7 TCU054 Chi-Chi, China 8 TCU067 Chi-Chi, China 9 TCU068 Chi-Chi, China 10 TCU120 Chi-Chi, China 远场长周期 11 ILA003 Chi-Chi, China 12 ILA004 Chi-Chi, China 13 ILA005 Chi-Chi, China 14 ILA056 Chi-Chi, China 15 TCU010 Chi-Chi, China 表 2 所选地震动下支座峰值位移
Table 2. Peak bearing displacement under the selected ground motions
/mm 地震动 0.07 g 0.4 g x向 y向 z向 x向 y向 z向 普通 El Centro 43.0 47.0 1.1 229.1 221.3 7.3 Kakogawa 42.3 41.1 1.7 182.9 164.4 7.3 Northridge 31.9 31.8 0.4 49.4 42.9 2.1 Taft 42.5 39.0 2.0 130.3 113.6 7.2 Whittier Narrows 31.9 31.8 0.2 49.4 42.9 1.8 平均 38.3 38.1 1.1 128.2 117.0 5.2 近断层 TCU049 42.7 48.2 1.5 144.8 171.6 6.8 TCU054 58.0 54.4 2.4 252.2 268.1 8.4 TCU067 54.6 54.5 2.5 388.1 216.9 11.3 TCU068 66.9 72.5 1.5 348.2 528.5 11.0 TCU120 71.7 49.7 2.7 539.5 209.5 12.0 平均 58.8 55.8 2.1 334.6 278.9 9.9 远场 ILA003 55.3 78.3 3.0 384.2 566.6 11.4 ILA004 78.4 102.2 4.2 543.9 967.5 19.1 ILA005 68.3 75.4 4.0 414.6 547.3 15.0 ILA056 105.6 115.5 3.5 529.2 978.9 19.2 TCU010 61.4 57.1 2.6 653.6 312.4 11.4 平均 73.8 85.7 3.4 505.1 674.5 15.8 表 3 三维隔震支座水平刚度
Table 3. Horizontal stiffness of the 3D isolation bearing
/(kN/m) μ 初始刚度 屈服后刚度 R=1 m R=1.5 m R=2 m R=1 m R=1.5 m R=2 m 0.01 6720 6720 6720 1680 1120 840 0.02 13440 13440 13440 1680 1120 840 0.03 20160 20160 20160 1680 1120 840 0.04 26880 26880 26880 1680 1120 840 0.05 33600 33600 33600 1680 1120 840 0.06 40320 40320 40320 1680 1120 840 0.07 47040 47040 47040 1680 1120 840 0.08 53760 53760 53760 1680 1120 840 0.09 60480 60480 60480 1680 1120 840 0.1 67200 67200 67200 1680 1120 840 注:R为滑面曲率半径。 表 4 三维隔震支座竖向刚度
Table 4. Vertical stiffness of the 3D isolation bearing
/(kN·m−1) TR 0.05 0.1 0.2 0.3 0.4 竖向刚度 11358 21684 39754 55044 68150 TR 0.5 0.6 0.7 0.8 0.9 竖向刚度 79508 89446 98216 106010 112985 -
[1] LIU Z, LI X, ZHANG Z. Quantitative identification of near-fault ground motions based on ensemble empirical mode decomposition [J]. KSCE Journal of Civil Engineering, 2020, 24(3): 922 − 930. doi: 10.1007/s12205-020-1491-2 [2] YALCIN O F, DICLELI M. Effect of the high frequency components of near-fault ground motions on the response of linear and nonlinear SDOF systems: A moving average filtering approach [J]. Soil Dynamics and Earthquake Engineering, 2020, 129: 105922-1 − 105922-16. [3] 陈笑宇, 王东升, 付建宇, 等. 近断层地震动脉冲特性研究综述[J]. 工程力学, 2021, 38(8): 1 − 14. doi: 10.6052/j.issn.1000-4750.2020.08.0582CHEN Xiaoyu, WANG Dongsheng, FU Jianyu, et al. State-of-the-art review on pulse characteristics of near-fault ground motions [J]. Engineering Mechanics, 2021, 38(8): 1 − 14. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.08.0582 [4] KOKETSU K, MIYAKE H, KOKETSU K, et al. A seismological overview of long-period ground motion [J]. Journal of Seismology, 2008, 12(2): 133 − 143. doi: 10.1007/s10950-007-9080-0 [5] CHENG Y, DONG Y, QIN L, et al. Seismic energy response of SDOF systems subjected to long-period ground motion records [J]. Advances in Civil Engineering, 2021, 2021: 1 − 20. [6] DAI M, LI Y, LIU S, et al. Identification of far-field long-period ground motions using phase derivatives [J]. Advances in Civil Engineering, 2019, 2019: 1065830. [7] 杜东升, 宋宝玺, 许伟志, 等. 高层钢结构考虑长周期地震动的减震加固研究[J]. 工程力学, 2020, 37(7): 189 − 200. doi: 10.6052/j.issn.1000-4750.2019.09.0508DU Dongsheng, SONG Baoxi, XU Weizhi, et al. Seismic retrofit of a high-rise steel structure considering long-period and long-duration ground motions [J]. Engineering Mechanics, 2020, 37(7): 189 − 200. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.09.0508 [8] GRAVES R W. Preliminary analysis of long-period basin response in the Los Angeles region from the 1994 Northridge earthquake [J]. Geophysical Research Letters, 1995, 22(2): 101 − 104. doi: 10.1029/94GL02894 [9] KANAORI Y, KAWAKAMI S I. The 1995 7.2 magnitude Kobe earthquake and the Arima-Takatsuki tectonic line: Implications of the seismic risk for central Japan [J]. Engineering Geology, 1996, 43(2/3): 61 − 82. [10] WANG G Q, ZHOU X Y, ZHANG P Z, et al. Characteristics of amplitude and duration for near fault strong ground motion from the 1999 Chi-Chi, Taiwan earthquake [J]. Soil Dynamics and Earthquake Engineering, 2002, 22(1): 73 − 96. doi: 10.1016/S0267-7261(01)00047-1 [11] HATAYAMA K. Lessons from the 2003 Tokachi-oki, Japan, earthquake for prediction of long-period strong ground motions and sloshing damage to oil storage tanks [J]. Journal of Seismology, 2008, 12(2): 255 − 263. doi: 10.1007/s10950-007-9066-y [12] 梁兴文, 董振平, 王应生, 等. 汶川地震中离震中较远地区的高层建筑的震害[J]. 地震工程与工程振动, 2009, 29(1): 24 − 31. doi: 10.13197/j.eeev.2009.01.003LIANG Xingwen, DONG Zhenping, WANG Yingsheng. et al. Damage to tall buildings in areas with large epicentral distance during M8.0 Wenchuan earthquake [J]. Journal of Earthquake Engineering and Engineering Vibration, 2009, 29(1): 24 − 31. (in Chinese) doi: 10.13197/j.eeev.2009.01.003 [13] 杨伟林, 朱升初, 洪海春, 等. 汶川地震远场地震动特征及其对长周期结构影响的分析[J]. 防灾减灾工程学报, 2009, 29(4): 473 − 478.YANG Weilin, ZHU Shengchu, HONG Haichun, el al. Analysis of remote site vibration characteristics of the Wenchuan earthquake and its effect on long-period structures [J]. Journal of Disaster Prevention and Mitigation Engineering, 2009, 29(4): 473 − 478. (in Chinese) [14] TAKEWAKI I, MURAKAMI S, FUJITA K, et al. The 2011 off the Pacific coast of Tohoku earthquake and response of high-rise buildings under long-period ground motions [J]. Soil Dynamics and Earthquake Engineering, 2011, 31(11): 1511 − 1528. doi: 10.1016/j.soildyn.2011.06.001 [15] 孙颖, 陈天海, 卓卫东, 等. 长周期地震动作用下隔震连续梁桥地震反应特性研究[J]. 工程力学, 2016, 33(增刊 1): 244 − 250. doi: 10.6052/j.issn.1000-4750.2015.05.S054SUN Ying, CHEN Tianhai, ZHUO Weidong, et al. Study on seismic response characteristics of isolated continuous bridges under long-period ground motion [J]. Engineering Mechanics, 2016, 33(Suppl 1): 244 − 250. (in Chinese) doi: 10.6052/j.issn.1000-4750.2015.05.S054 [16] 王博, 白国良, 代慧娟. 典型地震动作用下长周期单自由度体系地震反应分析[J]. 振动与冲击, 2013, 32(15): 190 − 196. doi: 10.3969/j.issn.1000-3835.2013.15.034WANG Bo, BAI Guoliang, DAI Huijuan. Seismic response analysis of long-period SDOF system under typical ground motions [J]. Journal of Vibration and Shock, 2013, 32(15): 190 − 196. (in Chinese) doi: 10.3969/j.issn.1000-3835.2013.15.034 [17] MAKRIS N, CHANG S P. Effect of viscous, viscoplastic and friction damping on the response of seismic isolated structures [J]. Earthquake Engineering Structural Dynamics, 2000, 29(1): 85 − 107. doi: 10.1002/(SICI)1096-9845(200001)29:1<85::AID-EQE902>3.0.CO;2-N [18] HAN Q H, JING M, LU Y, et al. Mechanical behaviors of air spring-FPS three-dimensional isolation bearing and isolation performance analysis [J]. Soil Dynamics and Earthquake Engineering, 2021, 149: 106872. doi: 10.1016/j.soildyn.2021.106872 [19] 杜修力, 许紫刚, 许成顺, 等. 摩擦摆支座在地下地铁车站结构中的减震效果研究[J]. 工程力学, 2019, 36(9): 60 − 67. doi: 10.6052/j.issn.1000-4750.2018.04.0225DU Xiuli, XU Zigang, XU Chengshun, et al. Seismic mitigation effect analysis on friction pendulum bearingapplied in the underground subway station [J]. Engineering Mechanics, 2019, 36(9): 60 − 67. (in Chinese) doi: 10.6052/j.issn.1000-4750.2018.04.0225 [20] BARRERA-VARGAS C A, DÍAZ I M, SORIA J M, et al. Enhancing friction pendulum isolation systems using passive and semi-active dampers [J]. Applied Sciences, 2020, 10(16): 5621. doi: 10.3390/app10165621 [21] CLOUGH RW, PENZIEN J. Dynamics of structures [M]. Beijing: Higher Education Press, 2006. -