[1] |
Bowden D M, Halley J E. Aluminum reliability improvement program-final report 60606[R]. Chicago, IL, USA:The Boeing Company, 2001.
|
[2] |
Chantzis D, Van-der-Veen S, Zettler J, Sim W M. An industrial workflow to minimize part distortion for machining of large monolithic components in aerospace industry[C]. Turin:Elsevier B. V, 2013:281-286.
|
[3] |
刘静安, 王嘉欣. 大型铝合金型材及其用途[J]. 有色金属加工, 2002, 31(3):40-43, 46. Liu Jingan, Wang Jiaxin. Large aluminum alloy profiles and their applications[J]. Nonferrous Metals Processing, 2002, 31(3):40-43, 46. (in Chinese)
|
[4] |
王祝堂. 铝合金中厚板的生产、市场与应用[J]. 轻合金加工技术, 2005, 33(1):1-20. Wang Zhutang. Production, market and application of aluminum alloy plate[J]. Light Alloy Fabrication Technology, 2005, 33(1):1-20. (in Chinese)
|
[5] |
王秋成. 航空铝合金残余应力消除及评估技术研究[D]. 杭州:浙江大学, 2003. Wang Qiucheng. Evaluation and relief of residual stresses in aluminum alloys for aircraft structures[D]. Hangzhou:Zhejiang University, 2003. (in Chinese)
|
[6] |
Trummer V R, Koch D, Witte A, Santos J F, Castro P M S T. Methodology for prediction of distortion of workpieces manufactured by high speed machining based on an accurate through-the-thickness residual stress determination[J]. The International Journal of Advanced Manufacturing Technology, 2013, 68(9/10/11/12):2271-2281.
|
[7] |
Huang X M, Sun J, Li J F. Finite element simulation and experimental investigation on the residual stress-related monolithic component deformation[J]. The International Journal of Advanced Manufacturing Technology, 2015, 77(5/6/7/8):1035-1041.
|
[8] |
Zhang Z, Li L, Yang Y F, He N, Zhao W. Machining distortion minimization for the manufacturing of aeronautical structure[J]. The International Journal of Advanced Manufacturing Technology, 2014, 73(9/10/11/12):1765-1773.
|
[9] |
张以都, 张洪伟. 航空整体结构件加工变形有限元数值仿真[J]. 北京航空航天大学学报, 2009, 35(2):188-192. Zhang Yidu, Zhang Hongwei. Finite element simulation of machining deformation for aeronautical monolithic component[J]. Journal of Beijing University of Aeronautics and Astronautics, 2009, 35(2):188-192. (in Chinese)
|
[10] |
Naotake Y, Yoshimichi H. Removal technique of residual stress in 7075 Aluminum Alloy[C]. Residual stress Ⅲ:Science and Technology. Tokushima:Elsevier Science Publishers, 1192:1140-1145.
|
[11] |
Heymes F, Commet B, DuBost B, Lassince P, Lequeu P, Raynaud G M. Development of new Al alloys for distortion free machined aluminum aircraft components[C]. The 1st International Non-ferrous Processing and Technology Conference, Missouri:ASM International, 1997:249-255.
|
[12] |
Shang H S. Prediction of the dimensional instability resulting from machining of residually stressed components[D]. LuBurke:Texas Tech University, 1995:1-128.
|
[13] |
刘秦龙, 华军, 贾瑞艳. 开槽应力释放法优化整体结构件切削加工研究[J]. 机械设计与制造工程, 2014, 43(4):21-24. Liu Qinlong, Hua Jun, Jia Ruiyan. Study on the slotting monolithic components under residual stress and its optimization[J]. Machine Design and Manufacturing Engineering, 2014, 43(4):21-24. (in Chinese)
|
[14] |
Robinson J S, Tanner D A, Truman C E. Measurement and prediction of machining induced redistribution of residual stress in the aluminum alloy 7449[J]. Experimental Mechanics, 2011, 51(6):981-993.
|
[15] |
王琥, 种浩, 高国强, 黄观新, 李光耀. 重分析方法研究进展及展望[J]. 工程力学, 2017, 34(5):1-16. Wang Hu, Chong Hao, Gao Guoqiang, Huang Guanxin, Li Guangyao. Review of advances and outlooks in reanalysis methods[J]. Engineering Mechanics, 2017, 34(5):1-16. (in Chinese)
|