留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

交通信号支撑结构疲劳裂纹扩展有限元分析

王综轶 ZHANG Yun-feng 王元清 杜新喜 袁焕鑫

王综轶, ZHANG Yun-feng, 王元清, 杜新喜, 袁焕鑫. 交通信号支撑结构疲劳裂纹扩展有限元分析[J]. 工程力学, 2018, 35(9): 180-187. doi: 10.6052/j.issn.1000-4750.2017.06.0432
引用本文: 王综轶, ZHANG Yun-feng, 王元清, 杜新喜, 袁焕鑫. 交通信号支撑结构疲劳裂纹扩展有限元分析[J]. 工程力学, 2018, 35(9): 180-187. doi: 10.6052/j.issn.1000-4750.2017.06.0432
WANG Zong-yi, ZHANG Yun-feng, WANG Yuan-qing, DU Xin-xi, YUAN Huan-xin. FINITE ELEMENT ANALYSIS OF FATIGUE CRACK PROPAGATION ON TRAFFIC SINGAL SUPPORT STRUCTURES[J]. Engineering Mechanics, 2018, 35(9): 180-187. doi: 10.6052/j.issn.1000-4750.2017.06.0432
Citation: WANG Zong-yi, ZHANG Yun-feng, WANG Yuan-qing, DU Xin-xi, YUAN Huan-xin. FINITE ELEMENT ANALYSIS OF FATIGUE CRACK PROPAGATION ON TRAFFIC SINGAL SUPPORT STRUCTURES[J]. Engineering Mechanics, 2018, 35(9): 180-187. doi: 10.6052/j.issn.1000-4750.2017.06.0432

交通信号支撑结构疲劳裂纹扩展有限元分析

doi: 10.6052/j.issn.1000-4750.2017.06.0432
基金项目: 国家自然科学基金项目(51508424);中国博士后科学基金项目(2018M630164)
详细信息
    作者简介:

    王综轶(1990-),男,武汉人,博士,主要从事钢结构方面研究(E-mail:wangzongyi1990@126.com);王元清(1963-),男,安徽人,教授,博士,主要从事钢结构方面研究(E-mail:wang-yq@mail.tsinghua.edu.cn);杜新喜(1961-),男,陕西人,教授,博士,主要从事钢结构方面研究(E-mail:duxinxi@163.com);袁焕鑫(1988-),男,湖南人,副教授,博士,主要从事钢结构方面研究(E-mail:yuanhuanxin@126.com).

    通讯作者:

    ZHANG Yun-feng (1972-),男,浙江人,教授,博士,主要从事钢结构方面研究(E-mail:zyf@umd.edu).

  • 中图分类号: O346.2+2

FINITE ELEMENT ANALYSIS OF FATIGUE CRACK PROPAGATION ON TRAFFIC SINGAL SUPPORT STRUCTURES

  • 摘要: 为了解决交通信号支撑结构疲劳裂纹扩展的问题,利用ANSYS软件对已有的信号支撑结构静力和疲劳试验分别建模分析,并用有限元结果与试验结果进行对比。研究表明:静力加载模型中,圆钢管上最大Mises应力为413.7 MPa,有限元结果与试验结果较为接近;裂纹最深点△K△K值较小,△Keff△K几乎完全相等,裂纹扩展寿命主要受△K值的影响;远离裂纹端点处各点的△K值呈现出M形状;Bowness公式计算得到的裂纹最深点的△K值比有限元结果大,利用该公式预测交通信号支撑结构端板与圆钢管焊接节点的疲劳寿命较为保守。
  • [1] Ding J, Chen X Z, Zuo D L, et al. Fatigue life assessment of traffic-signal support structures from an analytical approach and long-term vibration monitoring data[J]. Journal of Structural Engineering, 2016, 142(6):04016017.
    [2] American Association of State Highway and Transportation Officials (AASHTO). Standard specifications for structural supports for highway signs, luminaires, and traffic Signals, 6th Edition[S]. Washington, DC:AASHTO, 2013.
    [3] 宗亮. 基于断裂力学的钢桥疲劳裂纹扩展与寿命评估方法研究[D]. 北京:清华大学, 2015:3-4. Zong Liang. Investigation on fatigue crack propagation and life prediction of steel bridges based on Fracture Mechanics[D]. Beijing:Tsinghua University, 2015:3-4. (in Chinese)
    [4] 童乐为, 顾敏, 朱俊, 等. 基于断裂力学的圆钢管混凝土T型焊接节点疲劳寿命预测[J]. 工程力学, 2013, 30(4):331-336. Tong Lewei, Gu Min, Zhu Jun, et al. Prediction of fatigue for welded T-joints of concrete-filled circular hollow sections based on fracture mechanics[J]. Engineering Mechanics, 2013, 30(4):331-336. (in Chinese)
    [5] 顾敏, 童乐为, Zhao Xiaoling, 等. 圆钢管混凝土T型焊接节点应力强度因子计算方法研究[J]. 工程力学, 2011, 28(5):178-185. Gu Min, Tong Lewei, Zhao Xiaoling, et al. Numerical calculation methodology for stress intensity factors of CFCHS welded T-joints[J]. Engineering Mechanics, 2011, 28(5):178-185. (in Chinese)
    [6] Li Z, Zhang Y F. Fatigue Life Prognosis Study of Welded Tubular Joints in Signal Support Structures[J]. International Journal of Steel Structures, 2014, 14(2):281-292.
    [7] Li Z. Fatigue test and prognosis study of welded tubular joints in signal support structures[D]. College Park:University of Maryland, College Park, 2014:41-81.
    [8] Vosikovsky O, Bell R, Burns D J, et al. Fracture mechanics assessment of fatigue life of welded T-Joints, including thickness effect[C]. Proceedings of the 4th international conference on the behavior of offshore structures. Delft, the Netherland, 1985:453-464.
    [9] Moan T, Song R. Implications of inspection and repair on system fatigue reliability of offshore structures[J]. Journal of Offshore Mechanics and Arctic Engineering, 2000, 122(3):173-180.
    [10] Kaufmann E J, Metrovich B R, Pense A W. Characterization of cyclic inelastic strain behavior on properties of A572 Gr. 50 and A913 Gr. 50 rolled sections[R]. Bethlehem:ATLSS in Lehigh University, 2001:1-22.
    [11] Ansys. Ansys help 15.0, stress intensity factor (SIF) calculation[R]. Canonsburg, Pennsylvania, 2013.
    [12] Lie S T, Li T, Shao Y B. Stress intensity factors of tubular T/Y joints subjected to three basic loading[J]. Advanced Steel Construction, 2016, 12(2):109-133.
    [13] Heyder M, Kolk K, Kuhn G. Numerical and Experimental Investigations of the Influence of Corner Singularities on 3D Fatigue Crack Propagation[J]. Engineering Fracture Mechanics, 2005, 72(13):2095-2105.
    [14] Bowness D, Lee M M K. Prediction of weld toe magnification factors for semi-elliptical cracks in T-butt joints[J]. International Journal of Fatigue, 2000, 22(5):369-387.
    [15] Newman J C, Raju I S. An empirical stress-intensity factors equation for the surface crack[J]. Engineering Fracture Mechanics, 1981, 15(1/2):185-192.
  • 加载中
计量
  • 文章访问数:  418
  • HTML全文浏览量:  31
  • PDF下载量:  68
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-06-06
  • 修回日期:  2017-12-28
  • 刊出日期:  2018-09-29

目录

    /

    返回文章
    返回