[1] |
Ding J, Chen X Z, Zuo D L, et al. Fatigue life assessment of traffic-signal support structures from an analytical approach and long-term vibration monitoring data[J]. Journal of Structural Engineering, 2016, 142(6):04016017.
|
[2] |
American Association of State Highway and Transportation Officials (AASHTO). Standard specifications for structural supports for highway signs, luminaires, and traffic Signals, 6th Edition[S]. Washington, DC:AASHTO, 2013.
|
[3] |
宗亮. 基于断裂力学的钢桥疲劳裂纹扩展与寿命评估方法研究[D]. 北京:清华大学, 2015:3-4. Zong Liang. Investigation on fatigue crack propagation and life prediction of steel bridges based on Fracture Mechanics[D]. Beijing:Tsinghua University, 2015:3-4. (in Chinese)
|
[4] |
童乐为, 顾敏, 朱俊, 等. 基于断裂力学的圆钢管混凝土T型焊接节点疲劳寿命预测[J]. 工程力学, 2013, 30(4):331-336. Tong Lewei, Gu Min, Zhu Jun, et al. Prediction of fatigue for welded T-joints of concrete-filled circular hollow sections based on fracture mechanics[J]. Engineering Mechanics, 2013, 30(4):331-336. (in Chinese)
|
[5] |
顾敏, 童乐为, Zhao Xiaoling, 等. 圆钢管混凝土T型焊接节点应力强度因子计算方法研究[J]. 工程力学, 2011, 28(5):178-185. Gu Min, Tong Lewei, Zhao Xiaoling, et al. Numerical calculation methodology for stress intensity factors of CFCHS welded T-joints[J]. Engineering Mechanics, 2011, 28(5):178-185. (in Chinese)
|
[6] |
Li Z, Zhang Y F. Fatigue Life Prognosis Study of Welded Tubular Joints in Signal Support Structures[J]. International Journal of Steel Structures, 2014, 14(2):281-292.
|
[7] |
Li Z. Fatigue test and prognosis study of welded tubular joints in signal support structures[D]. College Park:University of Maryland, College Park, 2014:41-81.
|
[8] |
Vosikovsky O, Bell R, Burns D J, et al. Fracture mechanics assessment of fatigue life of welded T-Joints, including thickness effect[C]. Proceedings of the 4th international conference on the behavior of offshore structures. Delft, the Netherland, 1985:453-464.
|
[9] |
Moan T, Song R. Implications of inspection and repair on system fatigue reliability of offshore structures[J]. Journal of Offshore Mechanics and Arctic Engineering, 2000, 122(3):173-180.
|
[10] |
Kaufmann E J, Metrovich B R, Pense A W. Characterization of cyclic inelastic strain behavior on properties of A572 Gr. 50 and A913 Gr. 50 rolled sections[R]. Bethlehem:ATLSS in Lehigh University, 2001:1-22.
|
[11] |
Ansys. Ansys help 15.0, stress intensity factor (SIF) calculation[R]. Canonsburg, Pennsylvania, 2013.
|
[12] |
Lie S T, Li T, Shao Y B. Stress intensity factors of tubular T/Y joints subjected to three basic loading[J]. Advanced Steel Construction, 2016, 12(2):109-133.
|
[13] |
Heyder M, Kolk K, Kuhn G. Numerical and Experimental Investigations of the Influence of Corner Singularities on 3D Fatigue Crack Propagation[J]. Engineering Fracture Mechanics, 2005, 72(13):2095-2105.
|
[14] |
Bowness D, Lee M M K. Prediction of weld toe magnification factors for semi-elliptical cracks in T-butt joints[J]. International Journal of Fatigue, 2000, 22(5):369-387.
|
[15] |
Newman J C, Raju I S. An empirical stress-intensity factors equation for the surface crack[J]. Engineering Fracture Mechanics, 1981, 15(1/2):185-192.
|