[1] |
谢和平, 高峰, 鞠杨, 等. 页岩气储层改造的体破裂理论与技术构想[J]. 科学通报, 2016(1):36-46. Xie Heping, Gao Feng, Ju Yang, et al. Novel idea of the theory and application of 3D volume fracturing for stimulation of shale gas reservoirs[J]. Chinese Science Bulletin, 2016(1):36-46. (in Chinese)
|
[2] |
Ooi E T, Song C, Tin-Loi F, et al. Polygon scaled boundary finite elements for crack propagation modelling[J]. International Journal for Numerical Methods in Engineering, 2012, 91(3):319-342.
|
[3] |
Shi G H. Discontinuous deformation analysis:a new numerical model for the statics and dynamics of deformable block structures[J]. Engineering Computations, 1992, 9(2):157-168.
|
[4] |
Dverstorp B, Andersson J. Application of the discrete fracture network concept with field data:Possibilities of model calibratin and validation[J]. Water Resources Research, 1989, 25(3):540-550.
|
[5] |
Dolbow J, Belytschko T. A finite element method for crack growth without remeshing[J]. International Journal for Numerical Methods in Engineering, 1999, 46(1):131-150.
|
[6] |
Mohammadnejad T, Khoei A R. An extended finite element method for hydraulic fracture propagation in deformable porous media with the cohesive crack model[J]. Finite Elements in Analysis and Design, 2013, 73:77-95.
|
[7] |
Qing D Z, Yao J. Numerical simulation of shale hydraulic fracturing based on the extended finite element method[J]. Applied Mathematics & Mechanics, 2014, 35(11):887-1000.
|
[8] |
Zeng Q, Liu Z, Wang T, et al. Fully coupled simulation of multiple hydraulic fractures to propagate simultaneously from a perforated horizontal wellbore[J]. Computational Mechanics, 2017:1-19.
|
[9] |
Wang L X, Li S H, Zhang G X, et al. A GPU-based parallel procedure for nonlinear analysis of complex structures using a coupled FEM/DEM approach[J]. Mathematical Problems in Engineering, 2013, 15(2):1-15.
|
[10] |
Liu P, Ju Y, Ranjith P G, et al. Experimental investigation of the effects of heterogeneity and geostress difference on the 3D growth and distribution of hydrofracturing cracks in unconventional reservoir rocks[J]. Journal of Natural Gas Science & Engineering, 2016, 35:541-554.
|
[11] |
Ju Y, Liu P, Chen J, et al. CDEM-based analysis of the 3D initiation and propagation of hydrofracturing cracks in heterogeneous glutenites[J]. Journal of Natural Gas Science & Engineering, 2016, 35:614-623.
|
[12] |
Peng P H, Ju Y, Wang Y L, et al. Numerical analysis of the effect of natural micro-cracks on the supercritical CO2 fracturing crack network of shale rock based on bonded particle models[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2017, 41(18):1992-2013.
|
[13] |
袁驷, 王永亮, 徐俊杰. 二维自由振动的有限元线法自适应分析新进展[J]. 工程力学, 2014, 31(1):15-22. Yuan Si, Wang Yongliang, Xu Junjie. New progress in self-adaptive FEMOL analysis of 2D free vibration problems[J]. Engineering Mechanics, 2014, 31(1):15-22. (in Chinese)
|
[14] |
Yuan S, Wang Y L, Ye K S. An adaptive FEM for buckling analysis of non-uniform Bernoulli-Euler members via the element energy projection technique[J]. Mathematical Problems in Engineering, 2013, 40(7):221-239.
|
[15] |
Wang Y L, Ju Y, Zhuang Z, et al. Adaptive finite element analysis for damage detection of non-uniform Euler-Bernoulli beams with multiple cracks based on natural frequencies[J]. Engineering Computations, 2017, 35(3):1203-1229.
|
[16] |
Zienkiewicz O C, Zhu J Z. The superconvergent patch recovery (SPR) and adaptive finite element refinement[J]. Computer Methods in Applied Mechanics and Engineering, 1992, 101(1):207-224.
|
[17] |
Azadi H, Khoei A R. Numerical simulation of multiple crack growth in brittle materials with adaptive remeshing[J]. International Journal for Numerical Methods in Engineering, 2011, 85(8):1017-1048.
|
[18] |
ELFEN TGR user and theory manual[R]. Swansea United Kingdom:Rockfield Software Lted. 2016.
|
[19] |
Profit M, Dutko M, Yu J, et al. Complementary hydro-mechanical coupled finite/discrete element and microseismic modelling to predict hydraulic fracture propagation in tight shale reservoirs[J]. Computational Particle Mechanics, 2016, 3(2):229-248.
|
[20] |
Lewis R W, Schrefler J Z. The finite element method in the static and dynamic deformation and consolidation of porous media[J]. Meccanica, 1999, 34(3):231-232.
|
[21] |
Zienkiewicz O C, Taylor R L, Nithiarasu P. The finite element method (volume Ⅲ):The finite element method for fluid dynamics[M]. Seventh ed. Singapore:Elsevier Private Limited, 2015:423-449.
|