留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

层状岩石细观构造表征及劈拉受载各向异性行为研究

唐欣薇 黄文敏 周元德 张楚汉

唐欣薇, 黄文敏, 周元德, 张楚汉. 层状岩石细观构造表征及劈拉受载各向异性行为研究[J]. 工程力学, 2018, 35(9): 153-160. doi: 10.6052/j.issn.1000-4750.2017.06.0419
引用本文: 唐欣薇, 黄文敏, 周元德, 张楚汉. 层状岩石细观构造表征及劈拉受载各向异性行为研究[J]. 工程力学, 2018, 35(9): 153-160. doi: 10.6052/j.issn.1000-4750.2017.06.0419
TANG Xin-wei, HUANG Wen-min, ZHOU Yuan-de, ZHANG Chu-han. MESOSCALE STRUCTURE RECONSTRUCTION AND ANISOTROPIC BEHAVIOR MODELING OF LAYERED ROCK UNDER SPLITTING-TENSILE LOADING[J]. Engineering Mechanics, 2018, 35(9): 153-160. doi: 10.6052/j.issn.1000-4750.2017.06.0419
Citation: TANG Xin-wei, HUANG Wen-min, ZHOU Yuan-de, ZHANG Chu-han. MESOSCALE STRUCTURE RECONSTRUCTION AND ANISOTROPIC BEHAVIOR MODELING OF LAYERED ROCK UNDER SPLITTING-TENSILE LOADING[J]. Engineering Mechanics, 2018, 35(9): 153-160. doi: 10.6052/j.issn.1000-4750.2017.06.0419

层状岩石细观构造表征及劈拉受载各向异性行为研究

doi: 10.6052/j.issn.1000-4750.2017.06.0419
基金项目: 国家自然科学基金项目(51109083,41572251);清华大学水沙科学与水利水电工程国家重点实验室开放基金项目(2017C03);国家自然科学基金委员会-中国铁路总公司高速铁路基础研究联合基金项目(U1434211);国家重点研发计划项目(2016YFC1402800)
详细信息
    作者简介:

    唐欣薇(1980-),女,辽宁人,副教授,博士,硕导,从事岩土工程和水工结构方面的教学与研究工作(E-mail:cttangxw@scut.edu.cn);黄文敏(1992-),男,广东人,硕士生,从事水工结构工程研究(E-mail:cthwenmin@mail.scut.edu.cn);张楚汉(1933-),男,广东人,教授,中国科学院院士,博导,主要从事水工结构分析研究(E-mail:zch-dhh@tsinghua.edu.cn).

    通讯作者:

    周元德(1975-),男,广东人,副教授,博士,博导,从事岩土破坏力学研究(E-mail:zhouyd@tsinghua.edu.cn).

  • 中图分类号: TU452

MESOSCALE STRUCTURE RECONSTRUCTION AND ANISOTROPIC BEHAVIOR MODELING OF LAYERED ROCK UNDER SPLITTING-TENSILE LOADING

  • 摘要: 层状岩石结构内部矿物之间的定向排列与胶结作用形成不同构造方向的细观结构,使岩石变形破裂及其力学性能存在明显的各向异性。该文以板岩为研究对象,通过构建空间相关函数,建立可表征不同片理方向的岩石细观颗粒离散元模型。基于细观力学参数反演,针对不同片理角度(θ)的巴西劈裂试验开展数值仿真分析,对板岩的各向异性行为进行了研究。结果表明,由于岩石受内部片理构造的影响,在劈拉荷载作用下,呈现三种破坏模式,当θ ≤ 30°时主要发生矿物颗粒之间的拉伸破坏,当θ=45°~75°时为剪切与拉伸共同作用产生的破坏,当θ >75°时为沿着片理面的拉伸破坏;岩样破坏所耗能量及劈拉强度随片理角度的增大而逐渐降低。该文提出的方法能较好地模拟层状岩石的各向异性力学特征及变形破裂规律,与试验结果表现出良好的一致性。
  • [1] Özsan A, Karpuz C. Geotechnical rock-mass evaluation of the Anamur dam site, Turkey[J]. Engineering Geology, 1996, 42(1):65-70.
    [2] 张卫东, 常龙, 高佳佳. 横观各向同性地层井壁应力分析[J]. 工程力学, 2015, 32(11):243-250. Zhang Weidong, Chang Long, Gao Jiajia. Stress analysis at the borehole wall in transverse isotropic formations[J]. Engineering Mechanics, 2015, 32(11):243-250. (in Chinese)
    [3] 王乐华, 陈星, 党莉. 含显著沉积弱面砂岩加卸荷破坏试验研究[J]. 工程力学, 2013, 30(5):181-187. Wang Lehua, Chen Xing, Dang Li. Experimental study on the failure of sandstone with notable bedding under loading and unloading[J]. Engineering Mechanics, 2013, 30(5):181-187. (in Chinese)
    [4] 杨雪强, 李子生, 燕全会, 等. 横观各向同性岩石类材料的破坏准则[J]. 工程力学, 2012, 29(12):328-333. Yang Xueqiang, Li Zisheng, Yan Quanhui, et al. Failure criterion for transversely isotropic rock materials[J]. Engineering Mechanics, 2012, 29(12):328-333. (in Chinese)
    [5] 邓华锋, 张小景, 张恒宾, 等. 巴西劈裂法在层状岩体抗拉强度测试中的分析与讨论[J]. 岩土力学, 2016(增刊2):309-315. Deng Huafeng, Zhang Xiaojing, Zhang Hengbin, et al. Analysis and discussion on Brazilian tests on layered rock tensile strength[J]. Rock and Soil Mechanics, 2016(Suppl 2):309-315. (in Chinese)
    [6] Tavallali A, Vervoort A. Effect of layer orientation on the failure of layered sandstone under Brazilian test conditions[J]. International Journal of Rock Mechanics and Mining Sciences, 2010, 47(2):313-322.
    [7] Cho J W, Kim H, Jeon S, et al. Deformation and strength anisotropy of Asan gneiss, Boryeong shale, and Yeoncheon schist[J]. International Journal of Rock Mechanics and Mining Sciences, 2012, 50:158-169.
    [8] Vervoort A, Min K B, Konietzky H, et al. Failure of transversely isotropic rock under Brazilian test conditions[J]. International Journal of Rock Mechanics and Mining Sciences, 2014, 70:343-352.
    [9] 刘运思, 傅鹤林, 饶军应, 等. 不同层理方位影响下板岩各向异性巴西圆盘劈裂试验研究[J]. 岩石力学与工程学报, 2012, 31(4):785-791. Liu Yunsi, Fu Helin, Rao Junying, et al. Research on Brazilian disc splitting tests for anisotropy of slate under influence of different bedding orientations[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(4):785-791. (in Chinese)
    [10] 杨志鹏, 何柏, 谢凌志, 等. 基于巴西劈裂试验的页岩强度与破坏模式研究[J]. 岩土力学, 2015, 36(12):3447-3455. Yang Zhipeng, He Bai, Xie Lingzhi, et al. Strength and failure modes of shale based on Brazilian test[J]. Rock and Soil Mechanics, 2015, 36(12):3447-3455. (in Chinese)
    [11] Debecker B, Vervoort A. Two-dimensional discrete element simulations of the fracture behaviour of slate[J]. International Journal of Rock Mechanics and Mining Sciences, 2013, 61:161-170.
    [12] 谭鑫, Heinz K. 含层理构造的非均质片麻岩巴西劈裂试验及离散单元法数值模拟研究[J]. 岩石力学与工程学报, 2014, 33(5):938-946. Tan Xin, Heinz K. Brazilian splitting tests and numerical simulation by discrete element method for heterogeneous gneiss with bedding structure[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(5):938-946. (in Chinese)
    [13] Kim K Y, Zhuang L, Yang H, et al. Strength anisotropy of berea sandstone:results of X-ray computed tomography, compression tests, and discrete modeling[J]. Rock Mechanics and Rock Engineering, 2016, 49(4):1201-1210.
    [14] Park B, Min K B. Bonded-particle discrete element modeling of mechanical behavior of transversely isotropic rock[J]. International Journal of Rock Mechanics and Mining Sciences, 2015, 76:243-255.
    [15] Tang X W, Zhou Y D, Zhan C H, et al. Study on the heterogeneity of concrete and its failure behavior using the equivalent probabilistic model[J]. Journal of Materials in Civil Engineering, ASCE, 2011, 23(4):402-413.
    [16] Tang X W, Yang X B, Zhou Y D. An efficient algorithm for spatially-correlated random fields generation and its applications on the two-phase material[J]. Solid State Communications, 2014, 182:30-33.
    [17] 左清军, 吴立, 袁青, 等. 软板岩膨胀特性试验及微观机制分析[J]. 岩土力学, 2014(4):986-990. Zuo Qingjun, Wu Li, Yuan Qing, et al. Swelling characteristics test and micromechanism of soft slate[J]. Rock and Soil Mechanics, 2014, 35(4):986-990. (in Chinese)
    [18] Potyondy D O, Cundall P A. A bonded-particle model for rock[J]. International Journal of Rock Mechanics and Mining Sciences, 2004, 41(8):1329-1364.
    [19] 武明鑫, 张楚汉, 王进廷. 基于细观颗粒元的混凝土弯曲试验模拟与率效应[J]. 清华大学学报:自然科学版, 2014(8):999-1005. Wu Mingxin, Zhang Chuhan, Wang Jinting. Simulations of concrete bending and rate effects based on meso-scaled particle elements[J]. Journal of Tsinghua University (Science and Technology), 2014, 54(8):999-1005. (in Chinese)
    [20] Wang Z, Wang H, Cates M E. Effective elastic properties of solid clays[J]. Geophysics, 2001, 66(2):428-440.
    [21] Wu M X, Zhang C H. Influence of static pre-loading on the dynamic bending strength of concrete with particle element modeling[J]. Science China Technological Sciences, 2015, 58(2):284-296.
    [22] Qin C, Zhang C H. Numerical study of dynamic behavior of concrete by meso-scale particle element modeling[J]. International Journal of Impact Engineering, 2011, 38(12):1011-1021.
    [23] Itasca C G I. Particle flow code in 2 dimensions (version 4.0), user's manual:theory and background[M]. Minneapolis, Minnesota:Itasca Consulting Group Inc, 2008:3-5.
  • 加载中
计量
  • 文章访问数:  361
  • HTML全文浏览量:  26
  • PDF下载量:  40
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-06-02
  • 修回日期:  2017-11-20
  • 刊出日期:  2018-09-29

目录

    /

    返回文章
    返回