留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同升温-降温路径下中空圆柱饱和粉质黏土的热固结

杨光昌 白冰

杨光昌, 白冰. 不同升温-降温路径下中空圆柱饱和粉质黏土的热固结[J]. 工程力学, 2018, 35(9): 126-134. doi: 10.6052/j.issn.1000-4750.2017.05.0394
引用本文: 杨光昌, 白冰. 不同升温-降温路径下中空圆柱饱和粉质黏土的热固结[J]. 工程力学, 2018, 35(9): 126-134. doi: 10.6052/j.issn.1000-4750.2017.05.0394
YANG Guang-chang, BAI Bing. CONSOLIDATION TESTS OF HOLLOW CYLINDRICAL SATURATED SILTY CLAY SUBJECTED TO DIFFERENT HEATING-COOLING PATHS[J]. Engineering Mechanics, 2018, 35(9): 126-134. doi: 10.6052/j.issn.1000-4750.2017.05.0394
Citation: YANG Guang-chang, BAI Bing. CONSOLIDATION TESTS OF HOLLOW CYLINDRICAL SATURATED SILTY CLAY SUBJECTED TO DIFFERENT HEATING-COOLING PATHS[J]. Engineering Mechanics, 2018, 35(9): 126-134. doi: 10.6052/j.issn.1000-4750.2017.05.0394

不同升温-降温路径下中空圆柱饱和粉质黏土的热固结

doi: 10.6052/j.issn.1000-4750.2017.05.0394
基金项目: 国家自然科学基金项目(51478034,51678043)
详细信息
    作者简介:

    杨光昌(1990-),男,山东人,博士生,主要从事环境岩土工程等方面的研究(E-mail:16115304@bjtu.edu.cn).

    通讯作者:

    白冰(1966-),男,内蒙人,教授,博士,博导,主要从事复杂环境条件下岩土介质力学特性的研究(E-mail:baibing66@263.net).

  • 中图分类号: TU431

CONSOLIDATION TESTS OF HOLLOW CYLINDRICAL SATURATED SILTY CLAY SUBJECTED TO DIFFERENT HEATING-COOLING PATHS

  • 摘要: 利用自行研制的适用于中空圆柱体试样并可控制试样内、外边界温度的热固结试验装置,进行了一种饱和粉质黏土的热固结试验。温度路径包括试样内、外边界等温单级和多级升温-降温以及内、外边界不等温多级升温-降温,温度荷载的施加范围为25℃~75℃,围压为50 kPa、100 kPa、150 kPa、200 kPa四种情况。论文研究了不同升温-降温路径和不同固结压力条件下饱和粉质黏土的孔隙水压力和固结体应变随时间的演化规律,并对不同温度路径下的试验结果进行了比较。分析表明:同一温度路径下,围压越大,升温或降温所产生的最大归一化孔隙水压力的绝对值越小,固结体应变的大小与围压大小并不成单调关系;同一围压下,升温或降温幅度越大,所产生的最大归一化孔隙水压力的绝对值越大,相应的固结体应变也越大;经过不同温度路径升、降温到同一温度值,设置的温度等级越多,产生的体应变也就越大,并且相同温度等级路径,内、外等温的情况要比不等温情况产生的体应变大。
  • [1] Brandl H. Energy foundations and other thermo-active ground structures[J]. Geotechnique, 2006, 56(2):81-122.
    [2] 王成龙, 刘汉龙, 孔纲强, 等. 不同埋管形式下能量桩热力学特性模型试验研究[J]. 工程力学, 2017, 34(1):85-91. Wang Chenglong, Liu Hanlong, Kong Gangqiang, et al. Model tests on thermal mechanical behavior of energy piles influenced with heat exchangers types[J]. Engineering mechanics, 2017, 34(1):85-91. (in Chinese)
    [3] Man Y, Yang H, Diao N, et al. A new model and analytical solutions for borehole and pile ground heat exchangers[J]. Heat Mass Transfer, 2012, 53(13/14):2593-2601.
    [4] Bai Bing, Rao Dengyu, Xu Tao, et al. SPH-FDM boundary for the analysis of thermal process in homogeneous media with a discontinuous interface[J]. International Journal of Heat and Mass Transfer, 2018, 117:517-526.
    [5] 杨光昌, 白冰. 考虑超固结效应的不同温度路径下饱和粉质黏土的热固结[J]. 岩土力学, 2018, 39(1):71-77. Yang Guangchang, Bai Bing. Thermal consolidation of saturated silty clay considering overconsolidation effect with different heating-cooling paths[J]. Rock and Soil Mechanics, 2018, 39(1):71-77. (in Chinese)
    [6] Abuel-naga H M, Bergado D T, Bouazza A, et al. Thermal conductivity of soft bangkok clay from laboratory and field measurements[J]. Engineering Geology 2009, 105(3):211-219.
    [7] Li H, Nagano K, Lai Y. Heat transfer of a horizontal spiral heat exchanger under groundwater advection[J]. Heat Mass Transfer, 2012, 55(23/24):6819-6831.
    [8] Campanella R G, Mitchell J K. Influence of temperature variations on soil behavior[J]. Journal of the Soil Mechanics and Foundations Division, 1968, 94:709-734.
    [9] Demars K R, Charles R D. Soil volume change induced by temperature cycling[J]. Canadian Geotechnical Journal, 1981, 19(2):189-194.
    [10] Sultan N, Delage P, Cui Y J. Temperature effects on the volume change behavior of Boom clay[J]. Engineering Geology, 2002, 64(2/3):135-145.
    [11] Abuel-Naga H M, Bergado D T, Soralump S. Thermal consolidation of soft Bangkok clay[J]. International Journal of Lowland Technology, 2005, 17(1):1-9.
    [12] Cui Y J, Le T T, Tang A M, et al. Investigating the time dependent behaviour of boom clay under thermo-mechanical loading[J]. Geotechnique, 2009, 59(4):319-329.
    [13] Hueckel T, Pellegrini R. Effective stress and water pressure in saturated clays during heating-cooling cycles[J]. Canadian Geotechnical Journal, 1992, 29(6):1095-1102.
    [14] Cui Y J, Sultan N, Delage P. A thermo-mechanical model for clays[J]. Canadian Geotechnical Journal, 2000, 37(3):607-620.
    [15] 姚仰平, 杨一帆, 牛雷. 考虑温度影响的UH模型[J]. 中国科学, 2011, 41(2):158-169. Yao Yangping, Yang Yifan, Niu Lei. UH model considering temperature effects[J]. Science in China, 2011, 41(2):158-169. (in Chinese)
    [16] Zhang Z C. A thermodynamics-based theory for the thermo-poro-mechanical modeling of saturated clay[J]. International Journal of Plasticity, 2017, 90:164-185.
    [17] 李西斌, 李晓星, 赵石娆, 等. 饱和岩土介质地埋群管传热特性分析[J]. 工程力学, 2016, 33(7):123-128. Li Xibin, Li Xiaoxing, Zhao Shirao, et al. Heat transfer performance of ground heat exchanger group in saturated soil[J]. Engineering Mechanics, 2016, 33(7):123-128. (in Chinese)
    [18] Bai B, Shi X Y. Experimental study on the consolidation of saturated silty clay subjected to cyclic thermal loading[J]. Geomechanics & Engineering, 2017, 12(4):707-721.
    [19] 白冰, 陈星欣. 热-冷反复变化过程中饱和粘性土的热固结试验研究[J]. 工程力学, 2011, 28(10):139-144. Bai Bing, Chen Xingxin. Experimental study on the thermal consolidation of saturated clay under cyclic heating and cooling[J]. Engineering Mechanics, 2011, 28(10):139-144. (in Chinese)
    [20] 白冰, 张鹏远, 闫瑜龙, 等. 内外边界施加温度荷载的中空圆柱试样热固结试验[J]. 岩土工程学报, 2015, 37(1):67-74. Bai Bing, Zhang Pengyuan, Yan Yulong, et al. Consolidation tests on saturated soils subjected to thermal loading on inner and outer surfaces of hollow cylindrical specimens[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(1):67-74. (in Chinese)
    [21] 白冰. 岩土颗粒介质非等温一维热固结特性研究[J]. 工程力学, 2005, 22(5):186-191. Bai Bing. One-dimensional thermal consolidation characteristics of geotechnical media under non-isothermal condition[J]. Engineering mechanics, 2005, 22(5):186-191. (in Chinese)
    [22] Monfared M, Delage P, Sulem J, et al. A new hollow cylinder triaxial cell to study the behavior of geo-materials with low permeability[J]. International Journal of Rock Mechanics & Mining Sciences, 2011, 48(4):637-649.
    [23] Bai B. Thermal response of saturated porous spherical body containing a cavity under several boundary conditions[J]. Journal of Thermal Stresses, 2013, 36(11):1217-1232.
    [24] Burghignoli A, Desideri A, Miliziano S. A laboratory study on the thermomechanical behaviour of clayey soils[J]. Canadian Geotechnical Journal, 2000, 37(4):764-780.
    [25] Towhata I, Kuntiwattanaku P, Seko I, et al. Volume change of clays induced by heating as observed in consolidation tests[J]. Soils and Foundations, 1993, 33(4):170-183.
    [26] 邵玉娴, 施斌, 刘春, 等. 黏性土水理性质温度效应研究[J]. 岩土工程学报, 2011, 33(10):1576-1582. Shao Yuxian, Shi Bin, Liu Chun, et al. Temperature effect on hydro-physical properties of clayey soils[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(10):1576-1582. (in Chinese)
    [27] Zhao X, Zhou G, Lu G. Strain responses of frozen clay with thermal gradient under triaxial creep[J]. Acta Geotechnica, 2017, 12(1):183-193.
  • 加载中
计量
  • 文章访问数:  324
  • HTML全文浏览量:  36
  • PDF下载量:  57
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-05-23
  • 修回日期:  2018-01-16
  • 刊出日期:  2018-09-29

目录

    /

    返回文章
    返回