留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

桁架结构疲劳监测的应变响应估计方法研究

任鹏 周智 白石 欧进萍

任鹏, 周智, 白石, 欧进萍. 桁架结构疲劳监测的应变响应估计方法研究[J]. 工程力学, 2018, 35(9): 114-125. doi: 10.6052/j.issn.1000-4750.2017.05.0373
引用本文: 任鹏, 周智, 白石, 欧进萍. 桁架结构疲劳监测的应变响应估计方法研究[J]. 工程力学, 2018, 35(9): 114-125. doi: 10.6052/j.issn.1000-4750.2017.05.0373
REN Peng, ZHOU Zhi, BAI Shi, OU Jin-ping. RESEARCH ON A STRAIN RESPONSE ESTIMATION METHOD FOR TRUSS STRUCTURE FATIGUE MONITORING[J]. Engineering Mechanics, 2018, 35(9): 114-125. doi: 10.6052/j.issn.1000-4750.2017.05.0373
Citation: REN Peng, ZHOU Zhi, BAI Shi, OU Jin-ping. RESEARCH ON A STRAIN RESPONSE ESTIMATION METHOD FOR TRUSS STRUCTURE FATIGUE MONITORING[J]. Engineering Mechanics, 2018, 35(9): 114-125. doi: 10.6052/j.issn.1000-4750.2017.05.0373

桁架结构疲劳监测的应变响应估计方法研究

doi: 10.6052/j.issn.1000-4750.2017.05.0373
基金项目: 国家高技术研究发展计划(863计划)项目(2014AA110401)
详细信息
    作者简介:

    任鹏(1984-),男,辽宁人,博士,主要从事结构安全监测研究(E-mail:renpeng@mail.dlut.edu.cn);白石(1981-),男,黑龙江,博士,主要从事结构新材料与加固工程研究(E-mail:stone3214@163.com);欧进萍(1959-),男,湖南人,教授,博士,博导,中国工程院院士,主要从事结构安全监测、控制与防灾减灾工程领域研究(E-mail:oujinping@dlut.edu.cn).

    通讯作者:

    周智(1973-),男,湖南人,教授,博士,博导,主要从事结构安全监测研究(E-mail:zhouzhi@dlut.edu.cn).

  • 中图分类号: TU311.1

RESEARCH ON A STRAIN RESPONSE ESTIMATION METHOD FOR TRUSS STRUCTURE FATIGUE MONITORING

  • 摘要: 传感节点数据的高效利用是结构健康监测领域的热点研究问题。由于高维护成本和恶劣服役条件,结构疲劳监测系统往往测点有限,难以覆盖易损区域。该文针对两种应变响应估计方法:增广卡尔曼滤波方法和应变传递率矩阵方法进行研究探讨,并通过典型桁架结构的数值案例和模型实验分析两种方法的影响因素和疲劳监测的适用性。结果表明:两种方法无需已知荷载信息或进行物理参数识别,能够在仅有某一子结构可测,以及一定测量噪声和建模误差干扰的条件下有效估计低频带的强迫振动响应。其中,应变传递率矩阵方法可在结构阻尼和质量未建模的情况下,利用简单的模型先验信息精确估计应变响应,该方法计算简便,因而更加适合现场的疲劳在线监测。
  • [1] Jang S, Spencer B F, Rice J A, et al. Full-scale experimental validation of high-fidelity wireless measurement on a historic truss bridge[J]. Advances in Structural Engineering, 2011, 14(1):93-101.
    [2] 李惠, 周峰, 朱焰煌, 等. 国家游泳中心钢结构施工卸载过程及运营期间应变健康监测及计算模拟分析[J]. 土木工程学报, 2012, 45(3):1-9. Li Hui, Zhou Feng, Zhu Yanhuang, et al. An analysis of monitored and computed strain of the National Aquatics Center in the states of unloading and daily use[J]. China Civil Engineering Journal, 2012, 45(3):1-9. (in Chinese)
    [3] 祁耀斌, 何进飞, 梁磊. 大型海上浮吊吊臂桁架结构光纤光栅实时监测系统研究[J]. 中南大学学报, 2012, 43(9):3455-3463. Qi Yaobin, He Jinfei, Liang Lei. Fiber bragg grating real-time monitoring system of boom truss structure of large-scale offshore floating crane[J]. Journal of Central South University, 2012, 43(9):3455-3463. (in Chinese)
    [4] 邓扬, 李爱群, 丁幼亮. 钢箱梁桥海量应变监测数据分析与疲劳评估方法研究[J]. 工程力学, 2014, 31(7):69-77. Deng Yang, Li Aiqun, Ding Youliang. Analysis of monitored mass strain data and fatigue assessment for steel-box-girder bridges[J]. Engineering Mechanics, 2014, 31(7):69-77. (in Chinese)
    [5] 白石, 周智, 申宇, 等. 基于PVDF的无线智能疲劳监测系统[J]. 航空学报, 2014, 35(8):2190-2198. Bai Shi, Zhou Zhi, Shen Yu, et al. A wireless intelligence fatigue monitoring system based on PVDF[J]. Acta Aeronautice et Astronautice Sinica, 2014, 35(8):2190-2198. (in Chinese)
    [6] 李惠, 鲍跃全, 李顺龙, 等. 结构健康监测数据科学与工程[J]. 工程力学, 2015, 32(8):1-7. Li Hui, Bao Yuequan, Li Shunlong, et al. Data science and engineering for structural health monitoring[J]. Engineering Mechanics, 2015, 32(8):1-7. (in Chinese)
    [7] 刘纲, 邵毅敏, 黄宗明, 等. 长期监测中结构温度效应分离的一种新方法[J]. 工程力学, 2010, 27(3):55-61. Liu Gang, Shao Yimin, Huang Zongming, et al. A new method to separate temperature effect from long-term structural health monitoring data[J]. Engineering Mechanics, 2010, 27(3):55-61. (in Chinese)
    [8] 何文朋, 雷家艳. 运营实桥在线监测系统的建立及数据初步分析[J]. 工程力学, 2016, 33(增刊1):234-238. He Wenpeng, Lei Jiayan. The establishment of online monitoring system for TianYuan Bridge and preliminary analysis of data[J]. Engineering Mechanics, 2016, 33(Suppl1):234-238. (in Chinese)
    [9] 张青霞, 段忠东, Łukasz Jankowski. 结构损伤与荷载共同识别的研究[J]. 工程力学, 2012, 29(12):316-321. Zhang Qingxia, Duan Zhongdong, Łukasz Jankowski. The study on simultaneous identification of structural damage and loads[J]. Engineering Mechanics, 2012, 29(12):316-321. (in Chinese)
    [10] 徐训, 欧进萍. 基于独立分量分析的多源动态荷载识别方法[J]. 力学学报, 2012, 44(1):158-166. Xu Xun, Ou Jinping. An identification method of multi-source dynamic loads based on independent component analysis[J]. Journal of Theoretical and Applied Mechanics, 2012, 44(1):158-166. (in Chinese)
    [11] Papadimitriou C, Fritzen C P, Ntotsios E. Fatigue predictions in entire body of metallic structures from a limited number of vibration sensors using Kalman filtering[J]. Structural Control and Health Monitoring, 2010, 18(5):554-573.
    [12] Palanisamya R P, Cho S J, Kimb H J. et al. Experimental validation of Kalman filter-based strain estimation in structures subjected to non-zero mean input[J]. Smart Structures and Systems, 2015, 15(2):489-503.
    [13] Jo H, and Spencer B F. Multi-Metric model based structure health monitoring[C]//Proc. of SPIE, Sensors and Smart Structures Technologies for Civil. San Diego, CA, USA, SPIE, 2014.
    [14] Ren P, Zhou Z. Strain response estimation for the fatigue monitoring of an offshore truss structure[J]. Pacific Science Review, 2014, 16(1):30-36.
    [15] 张笑华, 任伟新, 方圣恩. 两种传感器的位置优化及结构多种响应重构[J]. 振动与冲击, 2014, 33(18):26-30. Zhang Xiaohua, Ren Weixin, Fang Shengen. Location optimization of dual-type sensors for multi-kind structural response reconstruction[J]. Journal of Vibration and Shock, 2014, 33(18):26-30. (in Chinese)
    [16] Gillijns S, De Moor B. Unbiased minimum-variance input and state estimation for linear discrete-time systems with discrete-time systems with direct feedthrough[J]. Automatica, 2007, 43(5):934-937.
    [17] Lei Y, Jiang Y Q, Yu Z Q. Structural damage detection with limited input and output measurement signals[J], Mechanical Systems and Signal Processing, 2012, 28:229-243.
    [18] Al-Hussein, A, Haldar A. Unscented Kalman filter with unknown input and weighted global iteration for health assessment of large structural systems[J]. Structural Control and Health Monitoring, 2016, 23(1):156-175.
    [19] Chatzi E, Smyth A. The unscented Kalman filter and particle filter methods for nonlinear structural system identification with non-collocated heterogeneous sensing[J]. Structural Control and Health Monitoring, 2010, 16(1):99-123.
    [20] Ribeiro A, Silva J, Maia N. On the generalization of the transmissibility concept[J]. Mechanical System and Signal Processing, 2000, 14(1):29-36.
    [21] Devriendt C, Guillaume P. The use of transmissibility measurements in output-only modal analysis[J]. Mechanical Systems and Signal Processing, 2007, 21(7):2689-2696.
    [22] Urgueira A, Almeida R, Maia N. On the use of the transmissibility concept for the evaluation of frequency response functions[J]. Mechanical Systems and Signal Processing, 2011, 25:940-951.
    [23] Wang J Y, Ren W X. Operational modal parameter identification from power spectrum density transmissibility[J]. Computer-Aided Civil and Infrastructure Engineering, 2012, 27(3):202-217.
    [24] Law S S, Li J, Ding Y. Structural response reconstruction with transmissibility concept in frequency domain[J]. Mechanical System and Signal Processing, 2010, 25(3):952-968.
    [25] Li J, Law S S. Sub-structural response reconstruction in wavelet domain[J]. Journal of Applied Mechanics. 2011, 78(4):925-948.
    [26] Wang J, Law S S, Yang Q S. Sensor placement method for dynamic response reconstruction[J]. Journal of Sound and Vibration, 2014, 333(9):2469-2482.
    [27] He J J, Guan X F, Liu Y M. Structural response reconstruction based on empirical mode decomposition in time domain[J]. Mechanical System and Signal Processing, 2012, 28:348-366.
    [28] Wan Z M, Li S D, Huang Q B, et al. Structural response reconstruction based on the modal superposition method in the presence of closely spaced modes[J]. Mechanical System and Signal Processing, 2014, 42(1/2):14-30.
    [29] Iliopoulos A, Shirzadeh R, Weijtjens W, et al. A modal decomposition and expansion approach for prediction of dynamic responses on a monopile offshore wind turbine using a limited number of vibration sensors[J]. Mechanical System and Signal Processing, 2016, 68/69:84-104.
    [30] Maes K, Iliopoulos A, Weijtjens W, et al. Dynamic strain estimation for fatigue assessment of an offshore monopile wind turbine using filtering and modal expansion algorithms[J]. Mechanical System and Signal Processing, 2016, 76/77:592-611.
    [31] 王焕定, 王伟. 有限单元法教程[M]. 哈尔滨:哈尔滨工业大学出版社, 2003. Wang Huanding, Wang Wei. Finite element method[M]. Harbin:Harbin Institute of Technology Press, 2003. (in Chinese)
    [32] Simon D. 最优状态估计-卡尔曼、H∞及非线性滤波[M]. 张勇刚等, 译. 哈尔滨:国防工业出版社. 2013. Simon D. Optimal state estimation[M]. translated by Zhang Yonggang, et al. New York:John Wiley and Sons, 2006. (in Chinese)
    [33] Bucy R, Joseph P. Filtering for stochastic processes with application to guideline[M]. New York:John Wiley and Sons, 1968.
    [34] Lourens E, Reynders E, De Roeck A G, et al. Augmented Kalman filter for force identification in structural dynamics[J]. Mechanical System and Signal Processing, 2012, 27:446-460.
    [35] An Y H, Li B B, Ou J P. An algorithm for damage localization in steel truss structures:Numerical simulation and experimental validation[J]. Journal of Intelligent Material Systems and Structures, 2013, 24(14):1683-1698.
    [36] 侯吉林, 欧进萍, Lukasz J. 基于局部主频率的子结构损伤识别研究与试验[J]. 工程力学, 2012, 29(9):99-105. Hou Jilin, Ou Jinping, Lukasz J. The study and experimental of substructure damage identification based on local primary frequency[J]. Engineering Mechanics, 2012, 29(9):99-105. (in Chinese)
    [37] Furukawa A, Otsuka H. Structural damage detection method using uncertain frequency response functions[J]. Computer-Aided Civil and Infra-structure Engineering, 2006, 21(4):292-305.
    [38] 汪之松, 郭惠勇, 李正良. 基于频率响应的不同结构损伤识别方法研究[J]. 工程力学, 2008, 25(6):6-12. Wang Zhisong, Guo Huiyong, Li Zhengliang. Identification methods for different structural damage based on frequency response[J]. Engineering Mechanics, 2008, 25(6):6-12. (in Chinese)
    [39] Bai S, Li X, Ou J P. et al. A wireless fatigue monitoring system utilizing a bio-inspired tree ring data tracking technique[J]. Sensors, 2014, 14(3):4364-4383.
  • 加载中
计量
  • 文章访问数:  339
  • HTML全文浏览量:  23
  • PDF下载量:  60
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-05-18
  • 修回日期:  2018-01-27
  • 刊出日期:  2018-09-29

目录

    /

    返回文章
    返回