留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于离散元法的脆性岩石细观蠕变失稳研究

胡光辉 徐涛 陈崇枫 杨学凯

胡光辉, 徐涛, 陈崇枫, 杨学凯. 基于离散元法的脆性岩石细观蠕变失稳研究[J]. 工程力学, 2018, 35(9): 26-36. doi: 10.6052/j.issn.1000-4750.2017.05.0356
引用本文: 胡光辉, 徐涛, 陈崇枫, 杨学凯. 基于离散元法的脆性岩石细观蠕变失稳研究[J]. 工程力学, 2018, 35(9): 26-36. doi: 10.6052/j.issn.1000-4750.2017.05.0356
HU Guang-hui, XU Tao, CHEN Chong-feng, YANG Xue-kai. A MICROSCOPIC STUDY OF CREEP AND FRACTURING OF BRITTLE ROCKS BASED ON DISCRETE ELEMENT METHOD[J]. Engineering Mechanics, 2018, 35(9): 26-36. doi: 10.6052/j.issn.1000-4750.2017.05.0356
Citation: HU Guang-hui, XU Tao, CHEN Chong-feng, YANG Xue-kai. A MICROSCOPIC STUDY OF CREEP AND FRACTURING OF BRITTLE ROCKS BASED ON DISCRETE ELEMENT METHOD[J]. Engineering Mechanics, 2018, 35(9): 26-36. doi: 10.6052/j.issn.1000-4750.2017.05.0356

基于离散元法的脆性岩石细观蠕变失稳研究

doi: 10.6052/j.issn.1000-4750.2017.05.0356
基金项目: 国家重点基础研究发展计划(973计划)项目(2014CB047100);国家自然科学基金项目(41672301,51474051);中央高校基本科研业务费项目(N150102002)
详细信息
    作者简介:

    胡光辉(1992-),男,安徽人,硕士生,主要从事岩石力学研究(E-mail:huguanghuineu@qq.com);陈崇枫(1991-),男,山东人,博士生,主要从事岩石力学研究(E-mail:871330060@qq.com);杨学凯(1993-),男,河北人,硕士生,主要从事岩石力学研究(E-mail:1396946033@qq.com).

    通讯作者:

    徐涛(1975-),男,湖北人,教授,博士,博导,主要从事岩石破裂失稳研究工作(E-mail:xutao@mail.neu.edu.cn).

  • 中图分类号: TD315

A MICROSCOPIC STUDY OF CREEP AND FRACTURING OF BRITTLE ROCKS BASED ON DISCRETE ELEMENT METHOD

  • 摘要: 为从细观角度探究脆性岩石的蠕变失稳过程及失稳机理,该文基于三维颗粒流程序(PFC3D)考虑岩石的时效变形损伤过程,引入岩石细观单元时效损伤的应力腐蚀模型,建立了基于离散元方法的岩石时效变形损伤破裂模型,并通过单轴压缩及单轴蠕变的室内实验和数值模拟对比验证了所建立的时效变形损伤破裂模型的合理性。数值模拟再现了岩石的初始蠕变、稳态蠕变和加速蠕变三个蠕变阶段,同时模拟结果表明,在单级加载条件下,随着应力水平提高,稳态蠕变应变率显著增大,岩石蠕变失效时间逐渐缩短,初始轴向应变、初始侧向应变和初始体应变不断增大,且细观裂纹扩展形式与单轴压缩破坏形式基本相同,都是以拉伸裂纹为主,裂纹的增长速率随着时间增加而不断增大,尤其在第三蠕变阶段裂纹增长速率迅速增大;在分级加载试验过程中,模型的轴向应变、侧向应变和体应变以及裂纹最终扩展形态与单级加载基本相同;此外将三维蠕变模拟结果与二维模拟结果进行对比,结果显示三维模型拟合程度更高。
  • [1] 许宏发. 软岩强度和弹模的时间效应研究[J]. 岩石力学与工程学报, 1997, 16(3):246-251. Xu Hongfa.. Time dependent behaviours of strength and elasticity modulus of weak rock[J]. Chinese Journal of Rock Mechanics and Engineering, 1997, 16(3):246-251. (in Chinese)
    [2] 李良权, 徐卫亚, 王伟, 等. 基于流变试验的向家坝砂岩长期强度评价[J]. 工程力学, 2010, 14(11):127-136. Li Liangquan, Xu Weiya, Wang Wei, et al. Estimation of long-term strength for xiangjiaba sandstone based on creep tests[J]. Engineering Mechanics, 2010, 14(11):127-136. (in Chinese)
    [3] 王贵君, 张磊, 张昱文, 等. 盐岩流变-损伤-破坏特性的实验研究[J]. 工程力学, 2013, 30(4):288-293. Wang Guijun, Zhang Lei, Zhang Yiwen, et al. Experimental investigation on the creep-damage-rupture characteristics of salt rock[J]. Engineering Mechanics, 2013, 30(4):288-293. (in Chinese)
    [4] 周广磊, 徐涛, 朱万成, 等. 基于温度-应力耦合作用的岩石时效蠕变模型[J]. 工程力学, 2017, 35(10):1-9. Zhou Guanglei, Xu Tao, Zhu Wancheng, et al. A time-dependent thermo-mechanical creep model of rock[J]. Engineering Mechanics, 2017, 35(10):1-9. (in Chinese)
    [5] 杨圣奇, 徐鹏. 一种新的岩石非线性流变损伤模型研究[J]. 岩土工程学报, 2014, 36(10):1846-1854. Yang Shengqi, Xu Peng. A new nonlinear rheological damage model for rock[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(10):1846-1854. (in Chinese)
    [6] Heap M J, Baud P, Meredith P G, et al. Time-dependent brittle creep in Darley Dale sandstone[J]. Journal of Geophysical Research:Solid Earth, 2009, 114(B7):1-22.
    [7] 蒲成志, 曹平, 张春阳, 等. 考虑时效损伤劣化的变参数非线性蠕变损伤模型[J]. 工程力学, 2017, 34(6):17-27. Pu Chengzhi, Cao Ping, Zhang Chunyang, et al. Variable parameters nonlinear creep damage model of rock with consideration of aging, damage and deterioration[J]. Engineering Mechanics, 2017, 34(6):17-27. (in Chinese)
    [8] Lockner D A, Madden T R. A multiple-crack model of brittle-fracture[J]. Journal of Geophysical ResearchSolid Earth, 1991, 96(B12):19643-19654.
    [9] Xu T, Tang C A, Zhao J, et al. Modelling the time-dependent rheological behaviour of heterogeneous brittle rocks[J]. Geophysical Journal International, 2012, 189(3):1781-1796.
    [10] Chen W, Konietzky H. Simulation of heterogeneity, creep, damage and lifetime for loaded brittle rocks[J]. Tectonophysics, 2014, 633:164-175.
    [11] Tran T H, Vénier R, Cambou B. Discrete modelling of rock-ageing in rockfill dams[J]. Computers and Geotechnics, 2009, 36(1):264-275.
    [12] Wang Y, Zhao Z, Song E. Discrete element modeling of the effect of particle shape on creep behavior of rockfills[J]. International Journal of Environmental, Engineering, 2017, 11(9):803-807.
    [13] Potyondy D O. Simulating stress corrosion with a bonded-particle model for rock[J]. International Journal of Rock Mechanics and Mining Sciences, 2007, 44(5):677-691.
    [14] 刘宁, 张春生, 褚卫江. 深埋大理岩破裂扩展时间效应的颗粒流模拟[J]. 岩石力学与工程学报, 2011, 30(10):1989-1996. Liu Ning, Zhang Chunsheng, Chu Weijiang. Simulating time-dependent failure of deep marble with particle flow code[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(10):1989-1996. (in Chinese)
    [15] 孙金山, 陈明, 姜清辉, 等. 锦屏大理岩蠕变损伤演化细观力学特征的数值模拟研究[J]. 岩土力学, 201334(12):3601-3608. Sun Jinshan, Chen Ming, Jiang Qinghui, et al. Numerical simulation of mesomechanical characteristics of creep demage evolution for Jingping marble[J]. Rock and Soil Mechanics, 2013, 34(12):3601-3608. (in Chinese)
    [16] 杨振伟, 金爱兵, 周喻, 等. 伯格斯模型参数调试与岩石蠕变特性颗粒流分析[J]. 岩土力学, 2015, 36(1):240-248. Yang Zhenwei, Jin Aibing, Zhou Yu, et al. Parametric analysis of Burgers model and creep properties of rock with particle flow code[J]. Rock and Soil Mechanics, 2015, 36(1):240-248. (in Chinese)
    [17] Liu X, Yang X, Wang J. A nonlinear creep model of rock salt and its numerical implement in FLAC 3D[J]. Advances in Materials Science & Engineering, 2015, 2015(5):1-8.
    [18] Li C, Ma Q, Chen G, et al. Study on Creep characteristics of cemented waste rock backfills[J]. Open Civil Engineering Journal, 2015, 9(1):957-961.
    [19] 赵延林, 曹平, 文有道, 等. 岩石弹黏塑性流变试验和非线性流变模型研究[J]. 岩石力学与工程学报, 2008, 27(3):477-486. Zhao Yanlin, Cao Ping, Wen Youdao, et al. Elastoviscoplastic rheological experiment and Nonlinear rheological model of rocks[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(3):477-486. (in Chinese)
    [20] Cundall P A. A computer model for simulating progressive, large-scale movements in blocky rock system[C]//Proceedings of the Symposium of the International Society for Rock Mechanics, Society for Rock Mechanics (ISRM), France, Nancy. 1971:10018723276.
    [21] Cundall P A, Strack O D L. A discrete numerical model for granular assemblies[J]. Geotechnique, 1979, 29(1):47-65.
    [22] 王培涛, 杨天鸿, 于庆磊, 等. 基于离散裂隙网络模型的节理岩体渗透张量及特性分析[J]. 岩土力学, 2013, 24(2):448-455. Wang Peitao, Yang Tianhong, Yu Qinglei, et al. Permeability tensor and seepage properties for jointed rock masses based on discrete fracture network model[J]. Rock and Soil Mechanics, 2013, 24(2):448-455. (in Chinese)
    [23] Bisdom K, Nick H M, Bertotti G. An integrated workflow for stress and flow modelling using outcrop-derived discrete fracture networks[J]. Computers & Geosciences, 2017, 103:21-35.
    [24] Hao S W, Wang H Y, Xia M F, et al. Relationship between strain localization and catastrophic rupture[J]. Theoretical and Applied Fracture Mechanics, 2007, 48(1):41-49.
    [25] Brantut N, Heap M J, Meredith P G, et al. Time-dependent cracking and brittle creep in crustal rocks:A review[J]. Journal of Structural Geology, 2013, 52:17-43.
  • 加载中
计量
  • 文章访问数:  482
  • HTML全文浏览量:  72
  • PDF下载量:  101
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-05-15
  • 修回日期:  2017-12-08
  • 刊出日期:  2018-09-29

目录

    /

    返回文章
    返回